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Bayesian false discovery rates
for post-translational modification proteomics∗

Yan Fu

Tandem mass spectrometry-based proteomics enables
high throughput analysis of post-translational modifications
(PTMs) on proteins. In current researches of shotgun pro-
teomics, peptides with various PTMs and those without
PTMs are often identified together and an overall false dis-
covery rate (FDR) is estimated. However, it is often the case
that only a subset of identifications, e.g. those with specific
PTMs, are emphasized or reported. In doing so, the risk
arises that the FDR of reported results is seriously under-
or overestimated, based on which unreliable conclusions may
be drawn. But unfortunately, this has not been widely real-
ized in the field, and there is still no agreement on the right
way to control the FDR of PTM identifications. As a result,
the ostrich policy is commonly adopted wittingly or unwit-
tingly, i.e., a simplistic overall estimate is assumed. This pa-
per, for the first time, proves that the FDRs of various PTM
identifications are in theory not equivalent to the overall
FDR and quantifies several major factors influencing their
relationships. Elaborate simulation experiments are carried
out to empirically verify the theoretical conclusions. Strate-
gies are suggested for better control of PTM FDRs.

Keywords and phrases: False discovery rate, Group
structure, Protein identification, Post-translational modifi-
cation, Proteomics.

1. INTRODUCTION

When multiple hypotheses are tested simultaneously,
small p-values may just occur by chance if the number of
tests is large enough. Researchers have realized early the
potential risk in real applications that only the results with
small p-values are selected for reporting, making the ac-
tual proportion of type I errors much higher than thought.
Therefore, methods for controlling the global error rate in
multiple hypothesis testing were proposed. False discovery
rate (FDR) is the one that has been most intensively inves-
tigated in theory and most widely utilized in practice. FDR
is defined as the expected proportion of incorrectly rejected
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null hypotheses among all rejected ones [3]. Nowadays, FDR
control has become indispensable in throughput biological
experiments such as microarray-based genomics [11] or mass
spectrometry-based proteomics [6].

However, just as one can misuse p-values, one can also
misuse FDRs. Imagine that in a study we have tested a
large number of hypotheses and estimated an overall FDR
for the rejected null hypotheses. Now, since only a subgroup
of these rejected hypotheses are of our current interest, we
only report them as discoveries. In doing so, the risk arises
that the false part of the claimed discoveries may be sig-
nificantly more or less than what is suggested by the esti-
mated overall FDR, as pointed out by Efron [12]. This is
because the p-values of the hypotheses of interest may tend
to be smaller or larger than those of other hypotheses, even
though all null hypotheses are true. In more formal words,
if the hypotheses have some inherent group structure and
this structure leads to different p-value sub-distributions,
then the subgroups of hypotheses partitioned by the struc-
ture would have their FDRs significantly different from each
other [21]. To remedy this, p-value weighting methods have
been proposed [12, 21, 4, 20]. The most important thing
is to first recognize the existence of potential structure in
hypotheses. Afterward, one can avoid selecting subgroups
of the hypotheses in line with the structure or use a rem-
edy method to compensate for the bias introduced by the
structure. The microarray data from different locations of
an organism or from genes involved in different biological
processes is a well-known example with such group struc-
tures [12, 21]. This paper shows that the same problem is
faced in the mass spectrometry-based proteomics.

The proteome refers to the protein complement of a
genome, and proteomics is the large-scale study of proteins
expressed in an organism or system [31]. Currently, tan-
dem mass spectrometry is the mainstay technology used
for proteomics [1]. Most proteins in cells carry some post-
translational modifications (PTMs) [36], and PTMs often
play an essential role in protein functions and are involved
in many pathological processes [37]. For example, fucosy-
lated glycoproteins have been demonstrated to be related
to several serious human diseases, such as hepatocellular
carcinoma [5], pancreatic cancer [30] and lung cancer [19].
PTMs are not directly encoded in the DNA sequences and
thus have to be studied in the protein level. Tandem mass
spectrometry-based proteomics provides a powerful tool for
large-scale analysis of PTMs [26, 38].
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Figure 1. An illustration of generating candidate peptides
with variable modifications (underlined amino acids are
possible sites and modifications are denoted by stars).

In shotgun proteomics, proteins are digested into peptides
and the latter are analyzed by tandem mass spectrometry.
Simply speaking, a tandem mass spectrum of a peptide is
a mass histogram of the fragment ions produced from pep-
tide fragmentation. Besides, the mass of the whole peptide
is also measured. When the peptide has been modified by
one or more PTMs, the mass of the intact peptide and the
masses of some fragment ions in the spectrum will be shifted
by the mass of the PTM(s) they are carrying. Identification
of peptides and the PTMs on them is usually accomplished
by searching the tandem mass spectra against a database
of protein sequences [17]. In this approach, proteins in the
database are first digested in silico into peptides, and the
peptides with similar masses to the peptide mass of the
input spectrum are fragmented in silico to generate theo-
retical spectra. Then, the theoretical spectra are compared
with the input spectrum, and candidate peptides are ranked
by a scoring function that measures the similarity between
the theoretical spectra and input spectrum. At last, the top-
scored peptide is reported as the hypothetical identification
for the input spectrum.

To identify the peptides with PTMs, the so-called vari-
able modification search mode is employed [39]. Variable
modifications are those that may or may not be present on
the peptides. During the database search, each of the vari-
able modification sites has two possible states: modified or
unmodified, and all possible modified forms of peptides are
enumerated for matching with the input spectrum. For ex-
ample, if there are five variable modifications sites on a pep-
tide, then there will be 25 modified forms for this peptide, as
illustrated in Figure 1. Therefore, the search space of candi-
date peptides would be geometrically expanded if there are
many variable modification sites on the protein sequences,
for example, when many types of variable modifications are
specified in a single search.

In a typical proteomic laboratory, millions of spectra can
be produced each day, and analysis of these spectra via

database search leads to a great number of hypothetical
identifications of peptides. These identifications, however,
are not always correct (often incorrect in fact) because of
multiple possible reasons, e.g. incompleteness of the pro-
tein database, unanticipated PTMs, poor spectrum quality,
inaccuracy of spectrum prediction, or imperfectness of the
scoring function. Therefore, it is extremely important to per-
form post-search filtering of identifications and control the
error rate of accepted identifications [27]. In the early years
of proteomics, empirical thresholds of identification scores
were used and no estimate of error rate was provided. Today,
estimating the FDR of peptide identifications from tandem
mass spectra has become one of the minimal requirements
for publications in proteomics.

Database search engines for peptide identification usually
report scores instead of p-values. But fortunately, estimat-
ing FDR from scores is theoretically feasible according to the
two-groups model for FDR estimation [13].The model says
that all FDR estimation methods rely on some underlying
assumptions about the distributions of p-values associated
with true and false null hypotheses. For example, it is gen-
erally assumed that p-values from true null hypotheses are
uniformly distributed in the interval [0, 1], while for false
null hypotheses, distributions skewed toward 0 and away
from 1, e.g. beta distributions [2, 33], were assumed. Impor-
tantly, with the two-groups model, the FDR can be recast
in a Bayes framework [14, 34, 35]. Further, the two-groups
model implies that it is the distributions of p-values instead
of the values themselves that are important. Actually, we do
not have to work with p-values for FDR estimation. Any sig-
nificance measures such as z-values or arbitrary scores can
also be used to derive FDR as long as their distributions
are known [29]. This is the very way used in proteomics to
estimate the FDR of peptide identifications.

To estimate the FDR of peptide identifications with
scores above a given threshold, the score distributions
are usually obtained in either a supervised manner or an
unsupervised manner [28]. Keller et al. [25] proposed to
model the scores of false and correct identifications with a
Gamma and a Gaussian distributions, respectively, and use
an expectation-maximization algorithm to fit the mixture
model to the empirical data on the fly in an experiment.
In a more popular and more robust approach, the empirical
null distribution is obtained by searching against a decoy
protein database with equal size to the target one, and the
number of false identifications is simply estimated as the
number of decoy matches at the same score threshold [16].
These two approaches can also be viewed as parametric and
non-parametric approaches, respectively. Following these pi-
oneering works, various semi-supervised, semi-parametric or
nonparametric approaches were proposed [7, 23, 8, 24, 40].

In current proteomics, peptides with various PTMs are
usually identified together with those without PTMs and
an overall FDR is estimated for all identifications. This has
been due to several reasons. First, most if not all proteomic
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samples are mixtures of unmodified and variously modified
peptides, even if proteins with specific PTMs have been en-
riched. Second, mass spectrometers are unable to distin-
guish modified peptides from unmodified ones and gener-
ate all their mass spectra together. Third, in the variable-
modification database search mode, candidate peptides in
all PTM forms are enumerated and tested in the same round
of search. Last, estimating an overall FDR for all identifi-
cations is computationally convenient, and is the common
feature provided by current proteomic software.

As we will see in following sections, the FDRs of identifi-
cations with different PTMs, or PTM FDRs for short, may
be very different from each other and from the overall FDR.
However, in contemporary literature, it is very common that
an overall FDR is estimated but only the identifications of
specific PTMs are emphasized or reported. This represents a
kind of abuse of the FDR concept, which apparently contra-
dicts the true aspiration of FDR, as explained in the begin-
ning of this section. Unfortunately, the question of whether
or not the PTM FDRs differ from the overall FDR has not
drawn much attention from the field, much less why and
how.

This paper makes the first attempt at theoretical mod-
eling of the PTM and overall FDRs in the tandem mass
spectrometry-based proteomics. Several important factors
influencing the relationships between the two kinds of FDRs
are discussed. Elaborate simulation experiments are carried
out to empirically verify the theoretical conclusions. Strate-
gies are suggested for better control of PTM FDRs.

2. THEORETICAL MODELING

The Bayesian FDR is the posterior probability that a re-
jected null hypothesis is true [15]. In the problem of peptide
identification, a null hypothesis is that the peptide identi-
fied for a spectrum is false. Therefore, the FDR of a group of
selected identifications is the probability of a spectrum be-
ing falsely identified given that its identification passes the
selection criterion. In this section, the FDRs of peptide and
PTM identifications are modeled based on the mixture dis-
tributions of identification scores and probabilities of other
events. As we will see, although these probabilities (distri-
butions) are in general unknown in practice, the relationship
between the overall FDR and PTM FDR can be derived, and
insightful conclusions can be made from the pure theoretical
analysis.

2.1 Notations and assumptions

Suppose all peptides and tandem mass spectra can be
grouped into m+ 1 categories: {c0, c1, c2, . . . , cm}. Peptides
belonging to category c0 are those that are not in the search
space under given database search conditions. Peptides be-
longing to ci(i ≥ 1) are those that are in the search space
and are with a particular PTM form (indexed by i). Non-
existence of PTMs is regarded as a special PTM form. The

categories of spectra are directly transferred from the pep-
tides from which the spectra are produced. The identifica-
tion for a spectrum is an assignment of a peptide (along
with potential PTMs).

Note that the categorization of peptides/spectra is not
the purpose or a necessary step of the peptide identifica-
tion problem at all. It is introduced here for discussion
purposes. The category of a spectrum is unknown unless
the peptide producing it is correctly identified. The way
to categorize peptides depends on what we are interested
in and may be not unique. For example, if we are looking
for phosphorylated peptides in a proteomic experiment, we
may group peptides into three categories: i) peptides out
of the search space, ii) unmodified peptides in the search
space and iii) phosphorylated peptides in the search space.
If we want to discriminate the number of phosphorylation
sites per peptide, the phosphorylated peptides can be fur-
ther divided into, say, the singly phosphorylated and the
multiply phosphorylated. Researchers in current proteomics
would not do such categorizations, although they may in-
deed focus on some category of identified peptides (e.g. those
with a certain PTM form). The purpose of this paper is to
analyze the relationships between the commonly reported
overall FDR and the actual category-specific FDRs at the
same score threshold.

The following notations and assumptions are used for the-
oretical modeling of FDRs of peptide and PTM identifica-
tions.

πi: the prior probability that a spectrum in a data set be-
longs to category ci. We have

∑
i πi = 1.

P (T |ci): the probability that the identification for a spec-
trum from category ci is true.

P (F |ci): the probability that the identification for a spec-
trum from category ci is false.

f(x|T, ci): the conditional probability density function
(pdf) of the identification score of a spectrum given
that the spectrum is from category ci and is correctly
identified.

f(x|F, ci): the conditional pdf of the identification score of
a spectrum given that the spectrum is from category ci
and is incorrectly identified.

S(x|T, ci) .=P (X > x|T, ci) =
∫∞
x

f(X|T, ci)dX: the sur-
vival function of the identification score of a spectrum
given that the spectrum is from category ci and is cor-
rectly identified.

S(x|F, ci) .=P (X > x|F, ci) =
∫∞
x

f(X|F, ci)dX: the sur-
vival function of the identification score of a spectrum
given that the spectrum is from category ci and is in-
correctly identified.

S(x, T |ci) .=P (T |ci)S(x|T, ci).
S(x, F |ci) .=P (F |ci)S(x|F, ci).
γi,k(x)

.
=P (k|X > x,F, ci): the probability that a spectrum

is identified as a peptide from category ck given that
the spectrum is from category ci, the identification is
false and the score is greater than x.

Bayesian false discovery rates for PTM proteomics 49



γk: the proportion of candidate peptides belonging to cat-
egory ck(k > 0) in the search space.

FDR(x) = P (F |X > x): the overall FDR of identifications
with scores greater than x.

FDRk(x) = P (F |X > x, k): the category-specific FDR of
the identifications with scores greater than x and with
assigned peptides belonging to category ck(k > 0).

2.2 Overall versus category-specific FDRs

With the above notations and assumptions, the overall
FDR of identifications with scores above a threshold x is:

(1) FDR(x) =

∑m
i=0 πiS(x, F |ci)∑m

i=0 πi(S(x, F |ci) + S(x, T |ci))
.

Similarly, the FDR of the subgroup of identifications with
assigned peptides belonging to category ck(k = 1, 2, . . . ,m)
is:

(2) FDRk(x) =

∑m
i=0 πiγi,k(x)S(x, F |ci)∑m

i=0 πiγi,k(x)S(x, F |ci) + πkS(x, T |ck)
.

Note that the summation in Equation 2 spans over all cate-
gories including ck, because a spectrum of category ck could
also be identified as some false peptide of category ck. The
category-specific FDR in Equation 2 is particularly impor-
tant, because in PTM-centric proteomics only the identifi-
cations with some specific PTM forms are of interest to bi-
ologists. Currently, as the overall FDR is easy to estimate,
it is often used as the category-specific FDR of PTM iden-
tifications. As shown by Equations 1 and 2, these two kinds
of FDRs are apparently different in general. However, the
quantitative relationship between them cannot be clearly
seen from the equations. To make the problem tractable, we
make the following assumption.

Assumption 1. If a spectrum is incorrectly identified, then
the category of the assigned peptide is independent of the
category of the spectrum and the identification score, and
is only related to the proportions of different categories of
candidate peptides in the search space, that is, for any k =
1, 2, . . . ,m, we have

(3) γ0,k(x) = γ1,k(x) = · · · = γm,k(x) = γk.

This is not a strong assumption. In fact, it can be con-
sidered as a truth for general search engines, because of the
consistent nature of theoretical spectra predicted from can-
didate peptides of different categories. With currently used
models for theoretical spectrum prediction, the PTM(s) on
a candidate peptide only cause mass shifting of predicted
fragment ions carrying the PTM(s) and do not change the
statistical characteristics of the theoretical spectrum. As a
result, the theoretical spectra predicted from different cat-
egories of peptides will show no difference sensible to the
search engine and the query spectrum. Meanwhile, a candi-
date peptide will not tend to be higher or lower scored just

because it has a specific PTM form. All candidate peptides,
either modified or unmodified, are born equal, and they have
equal probabilities of being mismatched.

Therefore, if a spectrum is incorrectly identified, the cate-
gory of the assigned peptide is only related to the frequencies
that different categories of candidate peptides are compared
to the input spectrum in the searching process. For suffi-
ciently large search spaces, which are common in practice,
the category frequencies of compared peptides are expected
to be the proportions of candidate peptides of various cate-
gories, i.e. γk, in the search space. Given a protein sequence
database, the values of γk are exclusively determined by the
specificities of PTMs. Assumption 1 leads us to the following
important theorem on the relationship between the overall
and category-specific FDRs.

Theorem 1. Under Assumption 1, the following rela-
tionship between FDRk(x) and FDR(x) holds for k =
1, 2, . . . ,m:

(4) FDRk(x) =
FDR(x)

FDR(x) + ρ(x)(1− FDR(x))
,

where

(5) ρ(x) =
πkS(x, T |ck)

γk
∑m

i=1 πiS(x, T |ci)
.

See Appendix A for proof of Theorem 1. From Theorem 1,
it is straightforward to obtain Corollaries 1–8.

Corollary 1. The relative relationship between the cate-
gory-specific FDR and the overall FDR is completely deter-
mined by ρ(x) given in Equation 5:

(6)

⎧⎨
⎩

FDRk(x) > FDR(x), ρ(x) < 1
FDRk(x) = FDR(x), ρ(x) = 1
FDRk(x) < FDR(x), ρ(x) > 1

Corollary 2. Given other conditions fixed, the larger the
γk is, or the more candidate peptides belonging to category
ck in the search space, the relatively larger the specific FDR
for category ck is than the overall FDR, and vice versa.

Corollary 2 indicates the key role of amino acid speci-
ficities of PTMs in PTM FDRs. The amino acids where a
PTM can occur basically determine the proportion of can-
didate peptides with this PTM in a database search. If the
occurrence frequency of the specific amino acids of a PTM
is large in the searched sequence database, there would be
many candidate peptides with this PTM. The specific po-
sitions on peptides or proteins are also important. PTMs
allowed to occur in arbitrary positions would surely lead
to more modified peptides in the search space than those
that are only allowed on termini of peptides or proteins. In
addition, even for the same type of PTM, the proportions
of candidate peptides with different numbers of PTM sites
may also be different, e.g. singly phosphorylated or doubly
phosphorylated peptides.
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Corollary 3. Given other conditions fixed, the smaller the
proportion of a category of spectra is, the relatively larger
the specific FDR for this category is than the overall FDR,
and vice versa.

Corollary 3 is very important, because it tells us that dif-
ferent protein samples will have different biases in the PTM
FDR estimation, depending on the abundance(s) of studied
PTM(s). According to Corollary 3, a whole-cell lysate would
tend to have an underestimated PTM FDR if the overall
FDR is used, since natural PTMs in cells are expected to
be present at substoichiometric amounts. On the contrary,
a protein sample enriched for a certain PTM would have an
overestimated PTM FDR. However, this has been hardly
realized in the field of proteomics.

Corollary 4. When the proportion of a category of spectra
goes to zero, the specific FDR for this category approaches
one.

For proteomic experiments without enrichment of PTMs,
many PTMs are present in extremely small amounts, and
thus very few spectra will be produced for peptides carrying
these PTMs. In such circumstances, we can expect that the
majority of the identifications for these PTMs are false even
if we control the overall FDR at a very low level, e.g. 0.01.

Corollary 5. The relationship between the overall and
category-specific FDRs is independent of π0, the proportion
of spectra of peptides that are out of the search space.

Corollary 6. Given other conditions fixed, the more likely
the spectra from a category are to be correctly identified, the
relatively smaller the specific FDR for this category is than
the overall FDR at the same score threshold, and vice versa.

Corollary 7. Given other conditions fixed, the larger the
scores of the correct identifications for spectra from a cat-
egory are, the relatively smaller the specific FDR for this
category is than the overall FDR at the same score thresh-
old, and vice versa.

Corollary 8. The overall and category-specific FDR rela-
tion is independent of the score distributions of false identi-
fications.

Above we have made no assumption about the identi-
fication score distributions associated with each category.
Below, we make a strong assumption that is not true in
practice but is helpful for our analysis.

Assumption 2. For spectra of peptides that exist in the
search space, they have equal probabilities of being cor-
rectly identified and their identification scores are identi-
cally distributed, that is, P (T |ci) = P (T |cj) and f(x|T, ci) =
f(x|T, cj) for any i, j = 1, 2, . . . ,m.

Actually, factors from the spectra or the scoring function
of the search engine may bias the score distributions of dif-
ferent categories. For example, some PTMs can significantly

change the patterns of peptide fragmentation and result in
mass spectra that tend to be poorly scored. However, since
our focus here is on the influences of peptide search space
and PTM concentrations on the PTM FDR, it is worthy tak-
ing one more step to simplifying the model. This will lead
us to theoretical predictions that are easy to verify with
simulation experiments.

With Assumption 2, we have

(7) S(x, T |c1) = S(x, T |c2) = · · · = S(x, T |cm).

Taking it into Equations 4 and 5 gives the following simpli-
fied version of the overall and category-specific FDR rela-
tionship given in Corollary 1.

Corollary 9. Under Assumptions 1 and 2, the following
relationship holds:

(8)

⎧⎨
⎩

FDRk(x) > FDR(x), γk > πk/
∑m

i=1 πi

FDRk(x) = FDR(x), γk = πk/
∑m

i=1 πi

FDRk(x) < FDR(x), γk < πk/
∑m

i=1 πi

Corollary 9 is useful in that it enables us to design well
controlled simulation experiments to empirically verify these
theoretical conclusions. As we will see in the next section,
almost the same category-specific and overall FDRs can be
observed when γk and πk/

∑m
i=1 πi are set to equal values.

2.3 False discoveries and other properties

Above we have focused on the relationship between the
category-specific and overall FDRs. In this subsection, we
pay some attention to the composition of false discoveries
and properties shared by both types of FDRs.

Theorem 2. Under Assumption 1, for any given identi-
fication score threshold x, the expected proportion of false
identifications with assigned peptides belonging to category
ck is γk.

See Appendix A for proof of Theorem 2.

Corollary 10. If the search space is dominated by a certain
category of candidate peptides, then all false identifications
are expected to be peptides of this category.

According to Corollary 10, if many types of PTMs
are considered in a search, then all false identifications
are probably peptides with PTMs. The refinement search
strategy employed by some search engines is an instance
of such circumstances, in which tens or hundreds of PTMs
are simultaneously considered in a single search [9]. In
combination with Corollary 4, we can conclude that if many
types of PTMs are considered but few spectra in a data
set are from peptides with these PTMs, then probably all
PTM identifications would be false and meanwhile all false
identifications would be peptides with PTMs.

Theorem 3. Given the score threshold fixed, the overall
and the category-specific FDRs increase with the proportion
of spectra of peptides out of the search space.
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See Appendix A for proof of Theorem 3.

Theorem 4. Given the score threshold fixed, expanding the
search space with irrelevant peptides increases the overall
and the category-specific FDRs.

See Appendix A for proof of Theorem 4.
Searching a larger database, setting a wider tolerance

window of peptide masses, or considering more types of vari-
able PTMs are typical ways to expand the search space.

Corollary 11. For search space-independent scoring func-
tions, there does not exist a score threshold large enough to
guarantee a given upper bound of FDR of identifications for
all search conditions.

Here, the term search space-independent means that
the score is completely determined by the input spectrum
and the peptide being scored. The Xcorr score in SE-
QUEST [17] and the KSDP score in pFind [18] are search
space-independent scoring functions. For these scores, the
largest score that can be observed by chance depends on the
size of search space. The E-value used in many search en-
gines, e.g. X!Tandem [10], pFind and Mascot [32], is a score
normalized by the size of search space and thus is search
space-dependent.

3. SIMULATION EXPERIMENTS

To validate the theoretical conclusions in Section 2, this
section presents some results of simulation experiments. The
purpose of using simulated data is that the PTM forms and
the number of spectra in each category can be freely con-
trolled. Moreover, the potential effects of PTMs on the char-
acteristics of spectra can be avoided.

3.1 PTMs

Three types of PTMs were considered including phos-
phorylation (+79.966 Da) on amino acids S, T and Y, car-
bamylation (+43.006 Da) on peptide N-termini, and acety-
lation (+42.011 Da) on protein N-termini. Additionally,
three forms of phosphorylation were considered: one, two
or three phosphorylation site(s) per peptide. These three
types of PTMs may not all be the most biologically impor-
tant ones, but they represent three classes of PTMs that
expand the candidate peptide search space in varying de-
grees. Phosphorylation can occur on three amino acids (S,
T and Y) in arbitrary positions of a peptide. Therefore,
an exponential number of phosphorylated peptides would

be enumerated in the search space, far more than the un-
phosphorylated peptides. Carbamylation occurs on the N-
terminus of each peptide, thus there are exactly the same
number of carbamylated peptides and un-carbamylated pep-
tides. Acetylation only occurs on the N-terminus of each
protein, thus acetylated peptides would be much fewer than
un-acetylated peptides in the search space (because many
peptides can be digested from a single protein, e.g. sev-
eral hundred peptides for a protein of normal length). In
addition, the proportions of different forms of phosphory-
lated peptides are also different. Peptides with two or three
phosphorylation sites should be more than those with one
phosphorylation site. The more candidate peptides a cate-
gory consists of in the search space, the more probable that
a spectrum will get matched to a random peptide of this
category.

3.2 Data and database

A Markov chain model was used to generate random
protein sequences. The model was trained on the Uniprot
protein sequence database. Besides the one-step transition
probabilities, the frequencies of the first and the second
amino acids of proteins as well as the length distribution
of proteins were also considered. A total of 100,000 protein
sequences were sampled from the model to generate a target
database, against which the spectra were to be searched. Be-
sides, 1,000 extra protein sequences were generated for use
in simulation of spectra of category c0.

Tandem mass spectra were simulated from some pep-
tide sequences that were theoretically digested from the
random protein sequences. To simulate spectra of peptides
with PTMs, PTM masses were added to the corresponding
specific amino acid sites in the peptides. A total of twelve
subsets of spectra were simulated, as summarized in Ta-
ble 1. Ten of them were composed of spectra of peptides
from the target database. For peptides without PTMs and
peptides with each of the following three PTM forms: single-
site phosphorylation (one phosphorylation site per peptide),
carbamylation, and acetylation, a subset of 10,000 spectra
and a subset of 1,000 spectra were generated, respectively. In
addition, 500 and 200 spectra were generated for the double-
site and triple-site phosphorylation forms, respectively. To
mimic the spectra that were from peptides out of the search
space, two subsets (also 10,000 and 1,000 respectively in
size) of spectra were generated from peptides digested from
the extra protein sequences. See Appendix B for the details
of spectrum simulation process.

Table 1. Summary of simulated data

In search space Out of search space

PTM Phosphorylation Carbamylation Acetylation None None

Sites 1 1 2 3 1 1 1 1 0 0 0 0

Size 10,000 1,000 500 200 10,000 1,000 10,000 1,000 10,000 1,000 10,000 1,000

Subset Sph1,10k Sph1,1k Sph2,5h Sph3,2h Scar,10k Scar,1k Sace,10k Sace,1k Snon,10k Snon,1k Sout,10k Sout,1k
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Table 2. Database search settings

Data subsets Variable modifications

Search 1 Sph1,1k∪Snon,10k∪Sout,10k Phosphorylation (S, T, Y)

Search 2 Sph1,10k∪Snon,10k∪Sout,10k Phosphorylation (S, T, Y)

Search 3 Sph1,10k∪Snon,1k∪Sout,10k Phosphorylation (S, T, Y)

Search 4 Scar,1k∪Snon,10k∪Sout,10k Carbamylation (peptide N-terminus)

Search 5 Scar,10k∪Snon,10k∪Sout,10k Carbamylation (peptide N-terminus)

Search 6 Scar,10k∪Snon,1k∪Sout,10k Carbamylation (peptide N-terminus)

Search 7 Sact,1k∪Snon,10k∪Sout,10k Acetylation (protein N-terminus)

Search 8 Sact,10k∪Snon,10k∪Sout,10k Acetylation (protein N-terminus)

Search 9 Sact,10k∪Snon,1k∪Sout,10k Acetylation (protein N-terminus)

Search 10 Snon,10k∪Sout,10k Ten unrelated PTMs

Search 11 Sph1,1k∪Scar,1k∪Sact,1k∪Snon,1k∪Sout,1k

Phosphorylation (S, T, Y)
Carbamylation (peptide N-terminus)
Acetylation (protein N-terminus)

Search 12 Sph1,1k∪Sph2,5h∪Sph3,2h∪Snon,1k∪Sout,1k Phosphorylation (S, T, Y)

Search 13 Sph1,10k∪Snon,10k∪Sout,1k Phosphorylation (S, T, Y)

Search 14 Sph1,10k∪Snon,10k∪Sout,10k
Phosphorylation (S, T, Y)
Oxidation (M)

3.3 Database searches

The database search engine used in this paper is pFind,
a publicly available software tool that we have developed
for protein identification [18], and has been used for prac-
tical proteomic researches, e.g. identification of core fuco-
sylated glycoproteins [22]. Here, the simulated spectra were
searched against the random protein sequence database us-
ing pFind in different settings, as summarized in Table 2.
In each setting, different combinations of subsets of spec-
tra were searched and/or different PTMs were set as vari-
able modifications. The common search parameters for all
searches were as follows: the precursor and fragment mass
matching tolerances were ±3 Da and ±0.5 Da, respectively;
trypsin was used for in silico protein digestion, and up to
two missed cleavages were allowed; the specificity of phos-
phorylation was on amino acids S, T and Y, while car-
bamylation was on peptide N-termini and acetylation was
on protein N-termini; a maximum of three PTM sites per
candidate peptide were allowed. As the peptide sequences
and PTM forms were a priori known for each of the sim-
ulated spectra, the real FDR of an arbitrary set of iden-
tifications could be exactly calculated without the need of
estimation.

3.4 Results

In the first experiment (searches 1–9), only one PTM type
was included in each search. For each of the three PTM
types, three combinations of the spectrum subsets were sep-
arately searched against the random sequence database with
the PTM specified as the variable modification parameter.
The subsets were selected so that the ratio between the
PTM-containing and the PTM-free in-search-space spec-
tra was increased from 1:10 to 1:1 and 10:1. In all nine

searches, the same subset (10K in size) of out-of-search-
space spectra were included. After each search, the overall
FDR and the PTM FDR were calculated at varying iden-
tification score thresholds. The curves of the PTM FDR
versus the overall FDR for the nine searches are given in
Figure 2.

Three trends are clearly demonstrated by Figure 2.
First, for all three PTM types, as the ratio between
PTM-containing spectra and PTM-free spectra increases,
the PTM FDR becomes smaller and smaller than the
overall FDR. Second, given the spectrum ratio fixed,
the FDR of phosphorylation identifications is the largest
among the three types of PTMs, while the FDR of protein
N-terminal acetylation identifications is the smallest. Third,
when the ratio is 1:1 for carbamylation, the PTM FDR
is approximately equal to the overall FDR. These results
verified Corollaries 1, 2, 3 and 9 in Section 2.2.

In the second experiment (search 10), a search was per-
formed in an extreme setting, in which there were few spec-
tra with PTMs but most candidate peptides in the search
space were in PTM forms. This setting mimics the circum-
stance of a refinement search for PTM identification. Here,
PTM-free spectra were searched against the database with
ten types of unrelated PTMs specified as the variable modi-
fication parameters. It turned out that nearly all false iden-
tifications were with PTMs and the real FDR of PTM-free
identifications was extremely low, in comparison with the
overall FDR, as shown by Figure 3.

The above two experiments indicate that the FDR of
PTM identifications should not be evaluated together with
the PTM-free identifications. But can we calculate an over-
all PTM FDR for all PTM types? The answer is obviously
no. We have seen the difference of FDRs between PTM
types in the first experiment. For a clearer demonstration,
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Figure 2. PTM FDR versus overall FDR under varying search settings (three types of PTMs and three levels of
in-search-space PTM-containing to PTM-free spectra ratios). The PTM FDR increases with the proportion of
PTM-containing peptides in the search space, and decreases with the proportion of PTM-containing spectra.

an experiment (search 11) was done by including all the
three PTM types into a single search and comparing their
FDRs directly. Figure 4 gives the type-specific PTM FDRs
in comparison with the overall PTM FDR. The overall
PTM FDR was calculated on all the identifications with
PTMs. The three type-specific PTM FDRs were calculated
on the identifications with each type of PTM.

However, separate FDR control for each type of PTM is
not yet the end of the story. If one is interested in more
specific PTM forms, e.g. two phosphorylations per peptide,
then the PTM identifications should be further divided for
more accurate FDR estimation. Otherwise, the FDR of the
reported identifications may still be over- or underestimated,
as revealed by an experiment (search 12, Figure 5). To what
level that one should divide the identifications into sub-
groups totally depends on what are of interest. The principle
of Occam’s Razor applies here: whenever possible, exclude
identifications that are unrelated to the final claims.

To verify Theorem 3, a comparative search (search 13)
was conducted, which was the same as search 2 but the
small subset (1k in size) of out-of-search-space spectra
was used. Figure 6 shows the overall and PTM FDRs as
functions of the score threshold. It is clear that both kinds
of FDRs were greatly increased by the larger proportion of
out-of-search-space spectra.

The last experiment (search 14) was to verify Theorem 4.
Based on the search setting in search 2, five unrelated PTM
types were added to expand the size of search space. Figure 7
compares the results of the two searches. It shows that due to
search space expansion, the FDR was significantly increased
at the same score threshold and identifications became much
fewer at the same level of FDR.

The above experimental results are not specific to pFind.
A popular commercial search engine, Mascot, was used to
repeat all the experiments and results very similar to those
of pFind were observed (data not shown).
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Figure 3. Results of searching PTM-free spectra with ten
types of PTMs considered. Apparently, all PTM identifications
were false. Interestingly, all false identifications were almost
PTM identifications (a). As a result, the FDR of none-PTM
identifications is extremely lower than the overall FDR (b).

4. CONCLUSIONS

The results of theoretical analyses and simulation exper-
iments in this paper demonstrate that:

1. In tandem mass spectrometry-based peptide and PTM
identification, the PTM FDR and the overall FDR are
in general not equal at the same score threshold in a
search. Therefore, one should avoid estimating an over-
all FDR if only PTM identifications are of interest.

2. Different PTM forms, e.g. different PTM types or num-
bers of PTM sites per peptide, also have different FDRs
at the same score threshold. Therefore, whenever pos-
sible, extract the minimal subset of identifications of
interest and estimate a specific FDR for them.

3. A PTM form that has more specific sites on the can-
didate peptides probably has a larger FDR of its own
than the overall FDR and FDRs of less frequent PTM
forms at the same score threshold. Be aware of this, if
an overall (PTM) FDR has to be used.

4. The FDR of a PTM form increases at a given score
threshold, as the number of spectra containing this
PTM form decreases. Therefore, carefully validate

Figure 4. Three type-specific PTM FDRs versus overall PTM
FDR obtained in a single search. Phosphorylation FDR is the
highest, carbamylation the middle and acetylation the lowest.

Figure 5. Site-specific phosphorylation FDRs versus overall
phosphorylation FDR. They are different due to the different
candidate peptide proportions and different spectra ratios.

PTM identifications in small quantities, and perform
enrichment if possible.

5. Considering a large number of PTM types in a search,
e.g. in the refinement search, will result in many random
matches of PTMs. Therefore, PTM FDRs had better be
estimated separately in such circumstances.

6. Increasing the proportion of spectra of peptides out of
the search space does not influence the relationship be-
tween the overall and the PTM FDRs, but decreases
the identification rate of spectra of peptides in the
search space. Therefore, whenever possible, exclude ir-
relevant components from the sample, e.g. unwanted
proteins, unnecessary chemical modifications and non-
peptide contaminants.

As a first attempt at the theoretical analysis of the PTM
FDR, this paper only performed verification experiments
on simulated spectra and mainly tested one search engine.
In fact, the characteristics of real spectra of peptides with
different PTMs are also an important factor influencing the
PTM FDR, and different search engines may have differ-
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Figure 6. Effect of the proportion of out-of-search-space
spectra on the overall FDR (a) and PTM FDR (b) at the

given score threshold. Both kinds of FDRs are increased by a
larger proportion of out-of-search-space spectra. The score

threshold displayed here is the minus logarithm of the e-value
in pFind.

ent scoring bias against or for specific PTMs. More impor-
tantly, based on the results in this paper, score weighting
methods just like p-value weighting should be developed to
increase the power/sensitivity of PTM identification. These
more complicated topics are to be touched in the future.

APPENDIX A. PROOFS OF THEOREMS

Proof of Theorem 1

Proof. With Assumption 1, Equation 2 becomes

FDRk(x) =
γk(x)

∑m
i=0 πiS(x, F |ci)

γk
∑m

i=0 πi(x)S(x, F |ci) + πkS(x, T |ck)
.

Dividing the enumerator and the denominator of the right
of the above equation by

∑m
i=0 πi(S(x, F |ci) + S(x, T |ci)),

we have

FDRk(x)

=

γk

∑m
i=0 πiS(x,F |ci)∑m

i=0 πi(S(x,F |ci)+S(x,T |ci))
γk

∑m
i=0 πi(x)S(x,F |ci)+πkS(x,T |ck)∑m
i=0 πi(S(x,F |ci)+S(x,T |ci))

Figure 7. Effect of the size of search space on the FDR at the
given score threshold (a) and the number of accepted

identifications at the given FDR (b). The score threshold
displayed here is the minus logarithm of the e-value in

pFind.

=
γkFDR(x)

γk

∑m
i=0 πi(x)S(x,F |ci)∑m

i=0 πi(S(x,F |ci)+S(x,T |ci)) +
πkS(x,T |ck)∑m

i=0 πi(S(x,F |ci)+S(x,T |ci))

=
γkFDR(x)

γkFDR(x) + πkS(x,T |ck)∑m
i=0 πiS(x,T |ci)

∑m
i=0 πiS(x,T |ci)∑m

i=0 πi(S(x,F |ci)+S(x,T |ci))

=
γkFDR(x)

γkFDR(x) + πkS(x,T |ck)∑m
i=0 πiS(x,T |ci) (1− FDR(x))

=
FDR(x)

FDR(x) + πkS(x,T |ck)
γk

∑m
i=1 πiS(x,T |ci) (1− FDR(x))

=
FDR(x)

FDR(x) + ρ(x)(1− FDR(x))

where

ρ(x) =
πkS(x, T |ck)

γk
∑m

i=1 πiS(x, T |ci)
.

Note that since the spectra in category c0 are out of the
search space, P (T |c0) is zero and thus S(x, T |c0) is zero.
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Proof of Theorem 2

Proof. The expected proportion of the false identifications
for category ck is the posterior probability that the false
identification for a spectrum is a peptide from category ck:

P (k|F,X > x) =
P (k, F,X > x)

P (F,X > x)

=

∑m
i=0 πiγi,k(x)S(x, F |ci)∑m

i=0 πiS(x, F |ci)

=
γk

∑m
i=0 πiS(x, F |ci)∑m

i=0 πiS(x, F |ci)
= γk.

Note that under Assumption 1, γi,k(x) equals γk for i =
1, 2, . . . ,m.

Proof of Theorem 3

Proof. Suppose π′
0 = απ0 and π′

i = βπi for i = 1, 2, . . . ,m,
where α > 1 > β > 0 and

∑m
i=0 π

′
i = 1. Then, the new

overall FDR at the score threshold x is:

FDR(x|π′
0, π

′
1, . . . , π

′
m)

=

∑m
i=0 π

′
iS(x, F |ci)∑m

i=0 π
′
i(S(x, F |ci) + S(x, T |ci))

=
απ0S(x, F |c0) +

∑m
i=1 βπiS(x, F |ci)

απ0S(x, F |c0) +
∑m

i=1 βπi(S(x, F |ci) + S(x, T |ci))

=

α
β π0S(x, F |c0) +

∑m
i=1 πiS(x, F |ci)

α
β π0S(x, F |c0) +

∑m
i=1 πi(S(x, F |ci) + S(x, T |ci))

=
(αβ − 1)π0S(x, F |c0) +

∑m
i=0 πiS(x, F |ci)

(αβ − 1)π0S(x, F |c0) +
∑m

i=0 πi(S(x, F |ci) + S(x, T |ci))

>

∑m
i=0 πiS(x, F |ci)∑m

i=0 πi(S(x, F |ci) + S(x, T |ci))
= FDR(x|π0, π1, . . . , πm).

Note that during the above derivation, we have twice used
the fact that S(x, T |c0) = 0.

Proof of Theorem 4

Proof. Let Ω1 denote the original search space, and Ω2

the new search space expanded with irrelevant candidate
peptides. Given other search conditions unchanged, the in-
creased number of competing peptides in Ω2 would increase
the chance of a spectrum being incorrectly identified:

(9) P (F |ci,Ω2)≥P (F |ci,Ω1),

or

(10) P (T |ci,Ω2)≤P (T |ci,Ω1).

Further, if the spectrum is incorrectly identified, its identifi-
cation score obtained in Ω2 will be no less than that obtained
in Ω1, thus we have,

(11) S(x|F, ci,Ω2)≥S(x|F, ci,Ω1).

However, for a fixed set of spectra, the identification score
of a spectrum remains the same if the spectrum is correctly
identified, thus we have

(12) S(x|T, ci,Ω2) = S(x|T, ci,Ω1).

Therefore,

S(x, F |ci,Ω2)

= P (F |ci,Ω2)S(x|F, ci,Ω2)

≥ P (F |ci,Ω1)S(x|F, ci,Ω1)

= S(x, F |ci,Ω1)

and

S(x, T |ci,Ω2)

= P (T |ci,Ω2)S(x|T, ci,Ω2)

≤ P (T |ci,Ω1)S(x|T, ci,Ω1)

= S(x, T |ci,Ω1).

Finally, the overall FDR in Equation 1 for the expanded
search space Ω2 is

FDR(x|Ω2)

=

∑m
i=0 πiS(x, F |ci,Ω2)∑m

i=0 πi(S(x, F |ci,Ω2) + S(x, T |ci,Ω2))

≥
∑m

i=0 πiS(x, F |ci,Ω1)∑m
i=0 πi(S(x, F |ci,Ω1) + S(x, T |ci,Ω1))

= FDR(x|Ω1).

The same logic applies to the category-specific FDR in
Equation 2.

APPENDIX B. SPECTRUM SIMULATION

Given the amino acid sequence and PTM configuration
of a peptide, the simulated spectrum of the peptide is gen-
erated with the following steps.

Step 1 The mass-to-charge ratio (m/z) values of singly
charged fragment ions of b and y types are computed
with PTM masses added.

Step 2 The intensities of the fragment ions are randomly
sampled from the uniform distribution on the interval
[0, 100].

Step 3 The intensities of a random proportion of fragment
ions are set to zero.

Step 4 A total of L·N noise peaks are generated, where L
is the length of the peptide sequence and N is a random
number on the interval [10, 30].
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Step 5 The m/z values of the noise peaks are randomly
sampled from the uniform distribution on the interval
[50,M ], where M is the sum of the masses of all amino
acid residues in the peptide.

Step 6 The intensities of the noise peaks are randomly
sampled from the exponential distribution with mean
10.

Step 7 The fragment ions and the noise peaks are com-
bined to form the tandem mass spectrum of the pep-
tide.

Step 8 The peptide masses are calculated and are deviated
by small random Gaussian errors with mean 0 and stan-
dard deviation 0.5.
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