Extension of Fouquet-Jolivet’s Conjecture

Zhiquan Hu

Faculty of Math. and Stat.
Central China Normal University
Wuhan 430079, PRC

Joint work with
Guantao Chen and Yaping Wu

July 10, 2010, GTCA10
Dedicated to Professor Tian’s 70th birthday
Notations and Definitions

\(\delta(G) \): the minimum degree of \(G \)
Notations and Definitions

- $\delta(G)$: the minimum degree of G
- $\sigma_2(G)$: $\min \{d(u) + d(v) : u \neq v, uv \notin E(G)\}$
Notations and Definitions

- \(\delta(G) \): the minimum degree of \(G \)
- \(\sigma_2(G) \): \(\min \{d(u) + d(v) : u \neq v, uv \notin E(G)\} \)
- \(\mu(G) \): \(\min \{\max\{d(u), d(v)\} : \text{dist}_G(u, v) = 2\} \)
Notations and Definitions

- $\delta(G)$: the minimum degree of G
- $\sigma_2(G)$: $\min \{d(u) + d(v) : u \neq v, uv \notin E(G)\}$
- $\mu(G)$: $\min \{\max\{d(u), d(v)\} : \text{dist}_{G}(u, v) = 2\}$
- $\kappa(G)$: the connectivity of G
Notations and Definitions

- $\delta(G)$: the minimum degree of G
- $\sigma_2(G)$: $\min \{d(u) + d(v) : u \neq v, uv \notin E(G)\}$
- $\mu(G)$: $\min \{\max\{d(u), d(v)\} : \text{dist}_G(u, v) = 2\}$
- $\kappa(G)$: the connectivity of G
- $\alpha(G)$: the independence number of G
Notations and Definitions

- $\delta(G)$: the minimum degree of G
- $\sigma_2(G)$: $\min \{d(u) + d(v) : u \neq v, uv \notin E(G)\}$
- $\mu(G)$: $\min \{\max\{d(u), d(v)\} : \text{dist}_G(u, v) = 2\}$
- $\kappa(G)$: the connectivity of G
- $\alpha(G)$: the independence number of G
- $c(G)$: the circumference of G
Classic results for hamiltonian graphs

- **Theorem A (Dirac, 1952)** Let G be a graph of order $n \geq 3$. If $\delta(G) \geq n/2$, then G is hamiltonian.
Classic results for hamiltonian graphs

- **Theorem A (Dirac, 1952)** Let G be a graph of order $n \geq 3$. If $\delta(G) \geq n/2$, then G is hamiltonian.

- **Theorem B (Ore, 1960)** Let G be a graph of order $n \geq 3$. If $\sigma_2 \geq n$, then G is hamiltonian.

Zhiquan Hu Extension of Fouquet-Jolivet’s Conjecture
Classic results for hamiltonian graphs

- **Theorem A (Dirac, 1952)** Let G be a graph of order $n \geq 3$. If $\delta(G) \geq n/2$, then G is hamiltonian.

- **Theorem B (Ore, 1960)** Let G be a graph of order $n \geq 3$. If $\sigma_2 \geq n$, then G is hamiltonian.

- **Theorem C (Chvátal & Erdős, 1972)** Let G be a k-connected graph of order $n \geq 3$ and α be the independence number of G. If $\alpha \leq \kappa$, then G is hamiltonian.
Classic results for hamiltonian graphs

- **Theorem A (Dirac, 1952)** Let G be a graph of order $n \geq 3$. If $\delta(G) \geq n/2$, then G is hamiltonian.

- **Theorem B (Ore, 1960)** Let G be a graph of order $n \geq 3$. If $\sigma_2 \geq n$, then G is hamiltonian.

- **Theorem C (Chvátal & Erdős, 1972)** Let G be a k-connected graph of order $n \geq 3$ and α be the independence number of G. If $\alpha \leq \kappa$ then G is hamiltonian.

- **Theorem D (Fan, 1984)** Let G be a k-connected graph. If $\mu(G) \geq n/2$, then G is hamiltonian.
Long Cycles Involving Independence Numbers

- **Theorem 1 (Chvátal & Erdős, 1972)** Let G be a k-connected graph of order $n \geq 3$ and α be the independence number of G. If $\alpha \leq \kappa$ then G is hamiltonian.
Long Cycles Involving Independence Numbers

- **Theorem 1 (Chvátal & Erdős, 1972)** Let G be a k-connected graph of order $n \geq 3$ and α be the independence number of G. If $\alpha \leq \kappa$ then G is hamiltonian.

- **Conjecture 2 (Fouquet & Jolivet, 1978).** Let G be a k-connected graph of order n. If $\alpha \geq k \geq 2$, then $c(G) \geq \frac{k(n+\alpha-k)}{\alpha}$.
Long Cycles Involving Independence Numbers

- **Theorem 1 (Chvátal & Erdős, 1972)** Let G be a k-connected graph of order $n \geq 3$ and α be the independence number of G. If $\alpha \leq \kappa$ then G is hamiltonian.

- **Conjecture 2 (Fouquet & Jolivet, 1978).** Let G be a k-connected graph of order n. If $\alpha \geq k \geq 2$, then $c(G) \geq \frac{k(n+\alpha-k)}{\alpha}$.

- **Progress of Fouquet-Jolivet’s Conjecture:**
 - True for $k = \alpha - 1, \alpha - 2$ (Fournier, 1982)
 - True for $k = 2$ (Fournier, 1984)
 - True for $k = 3$ (Manoussakis, Graphs and Combinators 2009)
Main Results

- Theorem 3 (Chen, Hu & Wu, 2008) Let G be a 4-connected graph of order n with independence number α. If $\alpha \geq 4$. Then,

$$c(G) \geq \frac{4(n+\alpha-4)}{\alpha}.$$

- The conjecture of Fouquet and Jolivet is true for $k = 4$
Main Results

- **Theorem 3 (Chen, Hu & Wu, 2008)** Let G be a 4-connected graph of order n with independence number α. If $\alpha \geq 4$. Then,

\[
c(G) \geq \frac{4(n+\alpha-4)}{\alpha}.
\]

- The conjecture of Fouquet and Jolivet is true for $k = 4$

- **Question (asked by a referee of JGT)**

 - Whether it is possible to prove a weaker result like

\[
c(G) \geq \frac{k(n+\alpha-k)}{\alpha} - c_k
\]

 for a constant c_k?

- **Theorem 4 (Chen, Hu & Wu, 2009)** Let G be a k-connected graph of order n and independence number α. If $\alpha \geq k \geq 4$, then

\[
c(G) \geq \frac{k(n+\alpha-k)}{\alpha} - \frac{(k-3)(k-4)}{2}.
\]
Theorem 5 (Chen, Hu & Wu, 2009) Let G be a k-connected graph, $k \geq 2$, of order n and independence number α. If $k \leq \alpha \leq k + 3$, then $c(G) \geq \frac{k(n+\alpha-k)}{\alpha}$.

The conjecture of Fouquet and Jolivet is true for $k = \alpha - 3$.

In order to prove Theorems 4 and 5, we proved a key lemma on how inserting vertices into a cycle and proposed a conjecture on the structure of graphs with given independent number (Conjecture 17).

We proved Conjecture 17 on March 2010 and get the following two results:
Theorem 5 (Chen, Hu & Wu, 2009) Let G be a k-connected graph, $k \geq 2$, of order n and independence number α. If $k \leq \alpha \leq k + 3$, then $c(G) \geq \frac{k(n+\alpha-k)}{\alpha}$.

♦ The conjecture of Fouquet and Jolivet is true for $k = \alpha - 3$.

In order to prove Theorems 4 and 5, we proved a key lemma on how to inserting vertices into a cycle and proposed a conjecture on the structure of graphs with given independent number α (Conjecture 17).
Theorem 5 (Chen, Hu & Wu, 2009) Let G be a k-connected graph, $k \geq 2$, of order n and independence number α. If $k \leq \alpha \leq k + 3$, then $c(G) \geq \frac{k(n+\alpha-k)}{\alpha}$.

The conjecture of Fouquet and Jolivet is true for $k = \alpha - 3$.

In order to prove Theorems 4 and 5, we proved a key lemma on how to inserting vertices into a cycle and proposed a conjecture on the structure of graphs with given independent number α (Conjecture 17).

We proved Conjecture 17 on March 2010 and get the following two results:
Theorem 6 (Chen, Hu & Wu, March 2010) Let G be a k-connected graph with $k \geq 2$, let C be a cycle of G and let H be any induced subgraph of $G - V(C)$. Then for any real number $s \geq 1$,

$$c(G) \geq \min\{ks, |C| + |H| - \alpha(H)(s - 1)\},$$
Theorem 6 (Chen, Hu & Wu, March 2010) Let \(G \) be a \(k \)-connected graph with \(k \geq 2 \), let \(C \) be a cycle of \(G \) and let \(H \) be any induced subgraph of \(G - V(C) \). Then for any real number \(s \geq 1 \),

\[
c(G) \geq \min\{ks, |C| + |H| - \alpha(H)(s - 1)\},
\]

Theorem 7 (Chen, Hu & Wu, March 2010) Let \(G \) be a \(k \)-connected graph, \(k \geq 2 \), of order \(n \) and independence number \(\alpha \). If \(\alpha \geq k \), then

\[
c(G) \geq \frac{k(n + \alpha - k)}{\alpha} - (p - 1)(k - k_0),
\]

where \(p = \lfloor \frac{\alpha}{k} \rfloor \) and \(k_0 \) is an integer such that Conjecture 8 is true for \(k = k_0 \).
Conjecture 8 (J. Chen, L. Chen, and D. Liu) Let G be a k-connected graph and $k \geq 2$. Then, for any two cycles C_1 and C_2 in G, there exist two cycles C_1^* and C_2^* such that $V(C_1^*) \cup V(C_2^*) \supseteq V(C_1) \cup V(C_2)$ and $|V(C_1^*) \cap V(C_2^*)| \geq k$.
Conjecture 8 (J. Chen, L. Chen, and D. Liu) Let G be a k-connected graph and $k \geq 2$. Then, for any two cycles C_1 and C_2 in G, there exist two cycles C_1^* and C_2^* such that $V(C_1^*) \cup V(C_2^*) \supseteq V(C_1) \cup V(C_2)$ and $|V(C_1^*) \cap V(C_2^*)| \geq k$.

By Theorem 7, the conjecture of of Fouquet and Jolivet is true for $k \leq \alpha \leq 2k - 1$.
Conjecture 8 (J. Chen, L. Chen, and D. Liu) Let G be a k-connected graph and $k \geq 2$. Then, for any two cycles C_1 and C_2 in G, there exist two cycles C_1^* and C_2^* such that

$V(C_1^*) \cup V(C_2^*) \supseteq V(C_1) \cup V(C_2)$ and $|V(C_1^*) \cap V(C_2^*)| \geq k$.

By Theorem 7, the conjecture of Fouquet and Jolivet is true for $k \leq \alpha \leq 2k - 1$.

On April 2010, D. B. West told G. Chen that they has just proved our Conjecture 13 and the full conjecture of Fouquet and Jolivet.
Conjecture 8 (J. Chen, L. Chen, and D. Liu) Let G be a k-connected graph and $k \geq 2$. Then, for any two cycles C_1 and C_2 in G, there exist two cycles C_1^* and C_2^* such that $V(C_1^*) \cup V(C_2^*) \supseteq V(C_1) \cup V(C_2)$ and $|V(C_1^*) \cap V(C_2^*)| \geq k$.

By Theorem 7, the conjecture of Fouquet and Jolivet is true for $k \leq \alpha \leq 2k - 1$.

On April 2010, D. B. West told G. Chen that they has just proved our Conjecture 13 and the full conjecture of Fouquet and Jolivet.

Theorem 10 (Suil, West & Wu, 2010) Let G be a k-connected graph of order n with independence number α. If $\alpha \geq k \geq 2$. Then,

$$c(G) \geq \frac{k(n + \alpha - k)}{\alpha}.$$
By use Kouider’s Theorem one times and Theorem 6, We proved the following generalization of Theorem 10.
By use Kouider’s Theorem one times and Theorem 6, We proved the following generalization of Theorem 10.

Theorem 11 (Chen, Hu & Wu, 2010) Let G be a k-connected graph with $k \geq 2$ and let H be a nonempty subgraph of G. Then

$$c(G) \geq \min \left\{ |H|, \frac{k(|H| + \alpha(H) - k)}{\alpha(H)} \right\}.$$
By use Kouider’s Theorem one times and Theorem 6, We proved the following generalization of Theorem 10.

Theorem 11 (Chen, Hu & Wu, 2010) Let \(G \) be a \(k \)-connected graph with \(k \geq 2 \) and let \(H \) be a nonempty subgraph of \(G \). Then

\[
c(G) \geq \min \left\{ |H|, \frac{k(|H| + \alpha(H) - k)}{\alpha(H)} \right\}.
\]

Theorem (Kouider, 1994) Let \(G \) be a \(k \)-connected graph, \(k \geq 2 \), of order \(n \) and \(H \) be an induced subgraph of \(G \) with independence number \(\alpha(H) \). Then, either the vertices of \(H \) are covered by one cycle of \(G \) or else \(G \) has a cycle \(C \) satisfying

\[
\alpha(H - V(C)) \leq \alpha(H) - k.
\]
Theorem 10 (Suil, West & Wu, 2010) Let G be a k-connected graph of order n with independence number α. If $\alpha \geq k \geq 2$. Then,

$$c(G) \geq \frac{k(n + \alpha - k)}{\alpha}.$$
Theorem 10 (Suil, West & Wu, 2010) Let G be a k-connected graph of order n with independence number α. If $\alpha \geq k \geq 2$. Then,

$$c(G) \geq \frac{k(n + \alpha - k)}{\alpha}.$$

Theorem 11 (Chen, Hu & Wu, 2010) Let G be a k-connected graph with $k \geq 2$ and let H be a nonempty subgraph of G. Then,

$$c(G) \geq \min \left\{ |H|, \frac{k(|H| + \alpha(H) - k)}{\alpha(H)} \right\}.$$

Theorem 10 (Suil, West & Wu, 2010) Let G be a k-connected graph of order n with independence number α. If $\alpha \geq k \geq 2$. Then,

$$c(G) \geq \frac{k(n + \alpha - k)}{\alpha}.$$

Theorem 11 (Chen, Hu & Wu, 2010) Let G be a k-connected graph with $k \geq 2$ and let H be a nonempty subgraph of G. Then,

$$c(G) \geq \min \left\{ |H|, \frac{k(|H| + \alpha(H) - k)}{\alpha(H)} \right\}.$$

Theorem 12 (Chen, Hu & Wu, 2010) Let G be a k-connected graph of order n and independence number α. If $\alpha \geq k \geq 2$, then

$$c(G) \geq \min \left\{ n, \max \left\{ \frac{k(n + \alpha - k)}{\alpha}, k \left[\frac{n + 2\alpha - 2k}{\alpha} \right] \right\} \right\}.$$
Example. Let $G := K_k + (kK_p \cup mK_{p-1})$, where $k, p \geq 2$ and $m \geq 1$.

\blacklozenge $n = k(p + 1) + m(p - 1)$, $\kappa = k$, and $\alpha = k + m$.

\blacklozenge $c(G) = k(p + 1) = k \left\lfloor \frac{n+2\alpha-2k}{\alpha} \right\rfloor$.

\blacklozenge $c(G) - \frac{k(n+\alpha-k)}{\alpha} = k[(p + 1) - \frac{k(p+1)+mp}{k+m}] = \frac{km}{k+m} \to k \ (m \to \infty)$.

Therefore, the low bound in Theorem 12 is sharp and better than that of Theorem 10.

Figure: $c(G) > k \left\lfloor \frac{n+2\alpha-2k}{\alpha} \right\rfloor > \frac{k(n+\alpha-k)}{\alpha}$
Theorem 12 (Chen, Hu & Wu, 2010) Let G be a k-connected graph of order n and independence number α. If $\alpha \geq k \geq 2$, then

$$c(G) \geq \min \left\{ n, \max \left\{ \frac{k(n + \alpha - k)}{\alpha}, k \left\lfloor \frac{n + 2\alpha - 2k}{\alpha} \right\rfloor \right\} \right\}.$$
Theorem 12 (Chen, Hu & Wu, 2010) Let G be a k-connected graph of order n and independence number α. If $\alpha \geq k \geq 2$, then
\[
c(G) \geq \min \left\{ n, \max \left\{ \frac{k(n + \alpha - k)}{\alpha}, k \left\lfloor \frac{n + 2\alpha - 2k}{\alpha} \right\rfloor \right\} \right\}.
\]

Remark 1: The function
\[
f(G) := \max\left\{ \frac{k(|G| + \alpha(G) - k)}{\alpha(G)}, k \left\lfloor \frac{|G| + 2\alpha(G) - 2k}{\alpha(G)} \right\rfloor \right\}
\]
from the set of graphs to positive real numbers is not monotonic increasing according to graph inclusion relation. That is, there exist a graph G and a subgraph H of G such that $f(G) < f(H)$.
Theorem 12 (Chen, Hu & Wu, 2010) Let G be a k-connected graph of order n and independence number α. If $\alpha \geq k \geq 2$, then

$$c(G) \geq \min \left\{ n, \max \left\{ \frac{k(n + \alpha - k)}{\alpha}, k \left\lfloor \frac{n + 2\alpha - 2k}{\alpha} \right\rfloor \right\} \right\}.$$

Remark 1: The function

$$f(G) := \max\left\{ \frac{k(|G| + \alpha(G) - k)}{\alpha(G)}, k \left\lfloor \frac{|G| + 2\alpha(G) - 2k}{\alpha(G)} \right\rfloor \right\}$$

from the set of graphs to positive real numbers is not monotonic increasing according to graph inclusion relation. that is, there exist a graph G and a subgraph H of G such that $f(G) < f(H)$.

Remark 2: If $\emptyset \neq H \subseteq G$, then $f(G[V(H)]) \geq f(H)$.
The following is a common generalization of Theorems 10-12.
The following is a common generalization of Theorems 10-12.

Theorem 13 (Chen, Hu & Wu, 2010) Let G be a k-connected graph with $k \geq 2$. Then

$$c(G) \geq \max \left\{ \min \left\{ |H|, f(H) \right\} : \emptyset \neq H \subseteq G \right\},$$

where $f(H) := \max \left\{ \frac{k(|H|+\alpha(H)-k)}{\alpha(H)}, k \left\lfloor \frac{|H|+2\alpha(H)-2k}{\alpha(H)} \right\rfloor \right\}$.
The following is a common generalization of Theorems 10-12.

Theorem 13 (Chen, Hu & Wu, 2010) Let G be a k-connected graph with $k \geq 2$. Then

$$c(G) \geq \max \{ \min \{ |H|, f(H) \} : \emptyset \neq H \subseteq G \},$$

where $f(H) := \max \left\{ \frac{k(|H|+\alpha(H)-k)}{\alpha(H)}, k \left\lfloor \frac{|H|+2\alpha(H)-2k}{\alpha(H)} \right\rfloor \right\}$

Example. $c(G) = k(p+1) = \min\{|H|, f(H)\} > f(G)$.

Extension of Fouquet-Jolivet's Conjecture
Let G be a k-connected graph and let V_0 a given subset of $V(G)$. It is interesting to know that whether V_0 is cycliable in G and if V_0 is not cycliable in G, how many vertices of V_0 can be contained in one common cycle of G.

Theorem 15 (Shi, 1992) Let G be a graph on n vertices and let $W \subseteq V(G)$ such that each pair of nonadjacent vertices $u, v \in W$ satisfies $d(u) + d(v) \geq n$. If $|W| \geq 3$, then G contains a cycle through all vertices of W.

Zhiquan Hu

Extension of Fouquet-Jolivet's Conjecture
Long Cycles Intersecting a given subgraph

- Let G be a k-connected graph and let V_0 a given subset of $V(G)$. It is interesting to know that whether V_0 is cycliable in G and if V_0 is not cycliable in G, how many vertices of V_0 can be contained in one common cycle of G.

- **Theorem 15 (Shi, 1992)** Let G be a graph on n vertices and let $W \subseteq V(G)$ such that each pair of nonadjacent vertices $u, v \in W$ satisfies $d(u) + d(v) \geq n$. If $|W| \geq 3$, then G contains a cycle through all vertices of W.

Zhiquan Hu
Extension of Fouquet-Jolivet’s Conjecture
We get the following theorem.
We get the following theorem.

Theorem 16 (Chen, Hu & Wu, 2010) Let G be a k-connected graph with $k \geq 2$ and let H be a subgraph of G. If $|H| \geq \alpha(H) + k$, then there is a cycle C in G such that

$$|V(C) \cap V(H)| \geq \min \left\{ |H|, k \left[\frac{|H| + \alpha(H) - k}{\alpha(H)} \right] \right\}.$$
Example. Let $G := G_k + (mK_p \cup tK_{p-1})$, where $k, p \geq 2$, $t \geq 1$ and $m \geq k + 1$.

For $\ell \leq t$, $H := mK_p \cup \ell K_{p-1}$ is a subgraph of G with

$$k \times \left\lfloor \frac{|H| + \alpha(H) - k}{\alpha(H)} \right\rfloor = k \times \left\lfloor \frac{mp + \ell(p - 1) + (m + \ell) - k}{m + \ell} \right\rfloor = kp,$$

which is the maximum number of vertices of H that can be contained in a common cycle of G. Therefore, the low bound in Theorem 16 is sharp.
Ideas of Proofs

1° Establish some lemmas on inserting H-vertices into a cycle C of $G - V(H)$.

2° Study the structure of graphs with given independence number.

3° Establish a low bound of $c(G)$ relative to a cycle C and an induced subgraph H of $G - C$.

4° By using 3° and Kouider’s Theorem to get the desired bound.
Ideas of Proofs

1° Establish some lemmas on inserting H-vertices into a cycle C of $G - V(H)$.

2° Study the structure of graphs with given independence number.

3° Establish a low bound of $c(G)$ relative to a cycle C and an induced subgraph H of $G - C$.

4° By using 3° and Kouider’s Theorem to get the desired bound.

Theorem (Kouider, JCTB 1994) Let G be a k-connected graph, $k \geq 2$, of order n and H be an induced subgraph of G. Then, either the vertices of H are covered by one cycle of G or else G has a cycle C satisfying $\alpha(H - V(C)) \leq \alpha(H) - k$.

Zhiquan Hu Extension of Fouquet-Jolivet’s Conjecture
Inserting H-vertices into a cycle C of $G - V(H)$

Definition Let C be a cycle of G and let H be an induced subgraph of $G - V(C)$. For $x_1 \neq x_2 \in V(C)$, the segment $C[x_1, x_2]$ is called a normal H-interval of C if there exist two internally vertex disjoint paths P_1, P_2 in G from $V(H)$ to $V(C)$ such that

(N-1) $V(P_i) \cap V(C) = \{x_i\}$, for each $i = 1, 2$ and

(N-2) $|V(H) \cap (V(P_1) \cup V(P_2))| = \min \{|H|, 2\}$.
Lemma (Hu, Tian & Wei, JCT B82 (2001)) Let $m \geq 0$ and $k \geq 2$. Let G be a $(m + k)$-connected graph and M an m-matching of G. Let $S \subseteq V(G) - V(M)$ with $|S| \leq k - 2$ and let C be a longest cycle passing through $M \cup S$. If $l(C) < \min \{|V(G)|, 2L - m\}$, where L is a constant, then every component H of $G - V(C)$ has a vertex x with $d_G(x) < L$.
Lemma (Hu, Tian & Wei, JCT B82 (2001)) Let $m \geq 0$ and $k \geq 2$. Let G be a $(m + k)$-connected graph and M an m-matching of G. Let $S \subseteq V(G) - V(M)$ with $|S| \leq k - 2$ and let C be a longest cycle passing through $M \cup S$. If $l(C) < \min \{|V(G)|, 2L - m\}$, where L is a constant, then every component H of $G - V(C)$ has a vertex x with $d_G(x) < L$.

The essential part of the proof: If the Lemma is not true, then there exists a set of $(m + k)$ pairwise edge disjoint normal H-intervals of C.
Lemma (Hu, Tian & Wei, JCT B82 (2001)) Let $m \geq 0$ and $k \geq 2$. Let G be a $(m + k)$-connected graph and M an m-matching of G. Let $S \subseteq V(G) - V(M)$ with $|S| \leq k - 2$ and let C be a longest cycle passing through $M \cup S$. If $l(C) < \min \{|V(G)|, 2L - m\}$, where L is a constant, then every component H of $G - V(C)$ has a vertex x with $d_G(x) < L$.

The essential part of the proof: If the Lemma is not true, then there exists a set of $(m + k)$ pairwise edge disjoint normal H-intervals of C.

Question: What happens if $m = 0$ and H is an induced subgraph of $G - V(C)$?
Inserting vertices into a cycle —a key lemma

▶ Definition Let $V_0 \subseteq V(G)$. A cycle C of G is called a maximal V_0-cycle if there is no cycle C' in G such that $V(C) \cap V_0$ is a proper subset of $V(C') \cap V_0$.
Inserting vertices into a cycle — a key lemma

Definition Let $V_0 \subseteq V(G)$. A cycle C of G is called a maximal V_0-cycle if there is no cycle C' in G such that $V(C) \cap V_0$ is a proper subset of $V(C') \cap V_0$.

Key Lemma. Let G be a k-connected graph, $k \geq 2$ and $s \geq 1$ be two integers. Let V_0 be a subset of $V(G)$, let C be a maximal V_0-cycle in G with length at least k and let H be a subgraph of $G[V_0 - V(C)]$ with $|H| \geq s$. If every normal H-interval $C[x_1, x_2]$ of C satisfies $|C(x_1, x_2) \cap V_0| \geq s$, then

(i) $|V(C) \cap V_0| \geq ks$, and

(ii) $|V(C)| \geq k(s + 1)$.
How to use the Key Lemma?

By taking \(V_0 = V(G) \) in the Key Lemma, we see that if \(C \) is a maximal cycle in \(G \) with \(|C| < k(s + 1) \), then for every induced subgraph \(H \) of \(G - V(C) \) with \(|H| \geq s \), there is a normal \(H \)-interval \(C[x_1,x_2] \) such that \(|C(x_1,x_2)| \leq s - 1 \).
How to use the Key Lemma?

By taking $V_0 = V(G)$ in the Key Lemma, we see that if C is a maximal cycle in G with $|C| < k(s + 1)$, then for every induced subgraph H of $G - V(C)$ with $|H| \geq s$, there is a normal H-interval $C[x_1, x_2]$ such that $|C(x_1, x_2)| \leq s - 1$.

Inserting vertices of H to C by removing paths—Find a cycle C' with $V(C') \supseteq C[x_2, x_1]$ and $\alpha(H - V(C')) \leq \alpha(H) - 1$.

Zhiquan Hu
Extension of Fouquet-Jolivet's Conjecture
Structures of graphs with independence number α

- Let G be a graph with independence number α.

 - $\alpha = 1$: G is Hamilton-connected.

 - $\alpha = 2$: either G has a hamiltonian cycle or $V(G)$ has a partition (V_1, V_2) such that both $G[V_1]$ and $G[V_2]$ are cliques.
Structures of graphs with independence number α

- Let G be a graph with independence number α.
 - $\alpha = 1$: G is Hamilton-connected.
 - $\alpha = 2$: either G has a hamiltonian cycle or $V(G)$ has a partition (V_1, V_2) such that both $G[V_1]$ and $G[V_2]$ are cliques.

- Equivalent form:
 - $\alpha = 1$: $\forall u \neq v \in V(G)$, G has a (u, v)-path P such that
 $$\alpha(G - V(P)) \leq \alpha(G) - 1.$$
 - $\alpha = 2$: either G has a hamiltonian cycle or $V(G)$ has a partition (V_1, V_2) such that
 $$\alpha(G) = \alpha(G[V_1]) + \alpha(G[V_2]).$$
Which structure of $G - V(C)$ is useful?

- **Problem (asked by a referee of JGT)**
 - Whether it is possible to prove a weaker result like
 \[
 c(G) \geq \frac{k(n + \alpha - k)}{\alpha} - c_k
 \]
 for a constant c_k?
Which structure of $G - V(C)$ is useful?

- **Problem (asked by a referee of JGT)**
 - Whether it is possible to prove a weaker result like

 $$c(G) \geq \frac{k(n + \alpha - k)}{\alpha} - c_k$$

 for a constant c_k?

- **Remark**: The fact that “$G - V(C)$ has a large subgraph H that is hamiltonian” is not useful for the conclusion that

 $$c(G) \geq \frac{k(n + \alpha - k)}{\alpha} - c_k$$
Which structure of $G - V(C)$ is useful?

- Problem (asked by a referee of JGT)
 - Whether it is possible to prove a weaker result like
 $$c(G) \geq \frac{k(n + \alpha - k)}{\alpha} - c_k$$
 for a constant c_k?

- Remark: The fact that “$G - V(C)$ has a large subgraph H that is hamiltonian” is not useful for the conclusion that
 $$c(G) \geq \frac{k(n + \alpha - k)}{\alpha} - c_k$$

- In order to solve the above problem, we propose the following conjecture.
Conjecture 17 (Chen, Hu & Wu, 2009): For any graph \(G \), one of the following two statements holds.

(i) For any two distinct vertices \(u, v \in V(G) \), there exists a \((u, v)\)-path \(P \) such that \(\alpha(G - V(P)) \leq \alpha(G) - 1 \).

(ii) there is a non-trivial partition \((V_1, V_2)\) of \(V(G) \) such that \(\alpha(G) = \alpha(G[V_1]) + \alpha(G[V_2]) \).
Conjecture 17 (Chen, Hu & Wu, 2009): For any graph G, one of the following two statements holds.

(i) For any two distinct vertices $u, v \in V(G)$, there exists a (u, v)-path P such that $\alpha(G - V(P)) \leq \alpha(G) - 1$.

(ii) there is a non-trivial partition (V_1, V_2) of $V(G)$ such that $\alpha(G) = \alpha(G[V_1]) + \alpha(G[V_2])$.

Example: The sun graph $S(C_t)$ doesn’t satisfies (i) and the cycle C_{2m+1} doesn’t satisfies (ii).
Conjecture 17 (Chen, Hu & Wu, 2009): For any graph G, one of the following two statements holds.

(i) For any two distinct vertices $u, v \in V(G)$, there exists a (u, v)-path P such that $\alpha(G - V(P)) \leq \alpha(G) - 1$.

(ii) there is a non-trivial partition (V_1, V_2) of $V(G)$ such that $\alpha(G) = \alpha(G[V_1]) + \alpha(G[V_2])$.
Conjecture 17 (Chen, Hu & Wu, 2009): For any graph G, one of the following two statements holds.

(i) For any two distinct vertices $u, v \in V(G)$, there exists a (u, v)-path P such that $\alpha(G - V(P)) \leq \alpha(G) - 1$.

(ii) there is a non-trivial partition (V_1, V_2) of $V(G)$ such that $\alpha(G) = \alpha(G[V_1]) + \alpha(G[V_2])$.

Failed to find a 2-connected graph G that doesn't satisfies (i), we believe that (i) is true for every 2-connected graph. We prove the following strong result by induction.
Conjecture 17 (Chen, Hu & Wu, 2009): For any graph G, one of the following two statements holds.

(i) For any two distinct vertices $u, v \in V(G)$, there exists a (u, v)-path P such that $\alpha(G - V(P)) \leq \alpha(G) - 1$.

(ii) There is a non-trivial partition (V_1, V_2) of $V(G)$ such that $\alpha(G) = \alpha(G[V_1]) + \alpha(G[V_2])$.

Failed to find a 2-connected graph G that doesn’t satisfy (i), we believe that (i) is true for every 2-connected graph. We prove the following strong result by induction.

Lemma 18 (Chen, Hu & Wu, 2010): Let G be a graph with independence number α and let u, v be two distinct vertices of G. If $\kappa(G) \geq 2$, then G contains a (u, v)-path P such that $\alpha(G - V(P)) \leq \alpha(G - v) - 1$.

Extension of Fouquet-Jolivet's Conjecture
Lemma 19 (Chen, Hu & Wu, 2009): Let G be a graph with independence number $\alpha \geq 2$. If $\kappa(G) \leq 1$, then there is a non-trivial partition (V_1, V_2) of $V(G)$ such that $\alpha(G) = \alpha(G[V_1]) + \alpha(G[V_2])$.
Lemma 19 (Chen, Hu & Wu, 2009): Let G be a graph with independence number $\alpha \geq 2$. If $\kappa(G) \leq 1$, then there is a non-trivial partition (V_1, V_2) of $V(G)$ such that $\alpha(G) = \alpha(G[V_1]) + \alpha(G[V_2])$.

By Lemmas 18 and 19, Conjecture 17 is true. Further, we have
Lemma 19 (Chen, Hu & Wu, 2009): Let G be a graph with independence number $\alpha \geq 2$. If $\kappa(G) \leq 1$, then there is a non-trivial partition (V_1, V_2) of $V(G)$ such that $\alpha(G) = \alpha(G[V_1]) + \alpha(G[V_2])$.

By Lemmas 18 and 19, Conjecture 17 is true. Further, we have

Theorem 20 Let G be a graph. Then, there exist two vertex disjoint induced subgraph H_1 and H_2 of G such that

(i) $V(G) = V(H_1) \cup V(H_2)$ and $\alpha(G) = \alpha(H_1) + \alpha(H_2)$;

(ii) $H_2 \neq \emptyset$ and for any two distinct vertices $u, v \in V(H_2)$, there exists a (u, v)-path P in H_2 such that $\alpha(H_2 - V(P)) \leq \alpha(H_2) - 1$.

Zhiquan Hu

Extension of Fouquet-Jolivet's Conjecture
A low bound of $c(G)$ w.r.t. a cycle C and an induced subgraph H of $G - C$

- **Key Lemma.** Let G be a k-connected graph, $k \geq 2$ and $s \geq 1$ be two integers. Let V_0 be a subset of $V(G)$, let C be a maximal V_0-cycle in G with length at least k and let H be a subgraph of $G[V_0 - V(C)]$ with $|H| > s - 1$. If there is no normal H-interval $C[x_1, x_2]$ of C such that $|C(x_1, x_2) \cap V_0| \leq s - 1$, then (i) $|V(C) \cap V_0| \geq ks$; (ii) $|V(C)| \geq k(s + 1)$.
A low bound of $c(G)$ w.r.t. a cycle C and an induced subgraph H of $G - C$

- **Key Lemma.** Let G be a k-connected graph, $k \geq 2$ and $s \geq 1$ be two integers. Let V_0 be a subset of $V(G)$, let C be a maximal V_0-cycle in G with length at least k and let H be a subgraph of $G[V_0 - V(C)]$ with $|H| > s - 1$. If there is no normal H-interval $C[x_1, x_2]$ of C such that $|C(x_1, x_2) \cap V_0| \leq s - 1$, then (i) $|V(C) \cap V_0| \geq ks$; (ii) $|V(C)| \geq k(s + 1)$.

- By using the Key Lemma and Theorem 20, we can prove...
A low bound of $c(G)$ w.r.t. a cycle C and an induced subgraph H of $G - C$

- **Key Lemma.** Let G be a k-connected graph, $k \geq 2$ and $s \geq 1$ be two integers. Let V_0 be a subset of $V(G)$, let C be a maximal V_0-cycle in G with length at least k and let H be a subgraph of $G[V_0 - V(C)]$ with $|H| > s - 1$. If there is no normal H-interval $C[x_1, x_2]$ of C such that $|C(x_1, x_2) \cap V_0| \leq s - 1$, then (i) $|V(C) \cap V_0| \geq ks$; (ii) $|V(C)| \geq k(s + 1)$.

- **By using the Key Lemma and Theorem 20, we can prove**

- **Theorem 21 (Chen, Hu & Wu, 2010).** Let G be a k-connected graph with $k \geq 2$, let C be cycle in G and let H be a subgraph of $G - V(C)$. Then, for every integer $t \geq 2$, we have

$$c(G) \geq \min\{kt, |C| + |H| - \alpha(H)(t - 2)\}.$$
Proof of Theorem 13

The following is a special form of Theorem 13.

Theorem 22 (Chen, Hu & Wu, 2010) Let G be a k-connected graph, $k \geq 2$, of order n and V_0 a nonempty subset of $V(G)$. Then

$$c(G) \geq \min \{ |V_0|, k \cdot \max \{ f_1(|V_0|), f_2(|V_0|) \} \},$$

where

$$f_i(V_0) = \frac{|V_0| + i(\alpha(G[V_0]) - k)}{\alpha(G[V_0])}, \ i = 1, 2.$$
Proof of Theorem 13

The following is a special form of Theorem 13.

▶ **Theorem 22 (Chen, Hu & Wu, 2010)** Let G be a k-connected graph, $k \geq 2$, of order n and V_0 a nonempty subset of $V(G)$. Then
\[
 c(G) \geq \min \{ |V_0|, k \cdot \max \{ f_1(|V_0|), f_2(|V_0|) \} \},
\]
where

\[
 f_i(V_0) = \frac{|V_0| + i(\alpha(G[V_0]) - k)}{\alpha(G[V_0])}, \quad i = 1, 2.
\]

▶ **Proof of Theorem 22:**

♦ Find a cycle C in G such that $V_0 \subseteq V(C)$ or
\[
 \alpha(G[V_0] - V(C)) \leq \alpha(G[V_0]) - k \text{ (by using Kouider's Theorem).}
\]

♦ If $V_0 \subseteq V(C)$, then $c(G) \geq |C| \geq |V_0|$; If $V_0 \not\subseteq V(C)$, then
\[
 \alpha(G[V_0]) > k. \text{ So, } f_1(V_0) \geq 2.
\]
Proof of Theorem 22 (continue):

♦ By using Theorem 21 with $H = G[V_0 - V(C)]$, we get

$$c(G) \geq \min\{kt, |C| + |H| - \alpha(H)(t - 2)\}$$

$$\geq \min\{kt, |V_0| - (\alpha(G[V_0]) - k)(t - 2)\}, \quad (1)$$

where t is an integer with $t \geq 2$.

♦ If $c(G) < kf_1(V_0)$, then by taking $t = \lceil f_1(V_0) \rceil$ in (1), we have

$$kf_1(V_0) > |V_0| - (\alpha(G[V_0]) - k)(\lceil f_1(V_0) \rceil - 2)$$

$$\geq |V_0| - (\alpha(G[V_0]) - k)(f_1(V_0) - 1),$$

which simplifies to $f_1(V_0) > \frac{|V_0| + \alpha(G[V_0]) - k}{\alpha(G[V_0])}$, a contradiction. Thus,

$$c(G) \geq kf_1(V_0). \quad (2)$$
Proof of Theorem 22 (continue):

If \(c(G) < k \lfloor f_2(V_0) \rfloor \), then by (2), \(\lfloor f_2(V_0) \rfloor > f_1(V_0) \geq 2 \). By taking \(t := \lfloor f_2(V_0) \rfloor \) in (1), we have

\[
\begin{align*}
c(G) & \geq |C| + |H| - \alpha(H)(\lfloor f_2(V_0) \rfloor - 2) \\
& \geq |V_0| - (\alpha(G[V_0]) - k)(\lfloor f_2(V_0) \rfloor - 2) \\
& = (|V_0| + 2\alpha(G[V_0]) - 2k) - (\alpha(G[V_0]) - k)\lfloor f_2(V_0) \rfloor.
\end{align*}
\]

This together with \(c(G) < k \lfloor f_2(V_0) \rfloor \) implies that

\[\lfloor f_2(V_0) \rfloor > \frac{|V_0| + 2\alpha(G[V_0]) - 2k}{\alpha(G[V_0])},\]

a contradiction. \(\square \)
Thank You Very Much For Your Attention!