K_5-Subdivisions in 5-connected nonplanar graphs

Xingxing Yu

School of Mathematics, Georgia Institute of Technology

Joint work with Jie Ma
(Kuartowski): A graph is planar iff it contains no subdivision of K_5 or subdivision of $K_{3,3}$. (Denote them as TK_5 and $TK_{3,3}$.)

3-Connected nonplanar graphs other than K_5 contain $TK_{3,3}$.

Conjecture (Seymour 1977, Kelmans 1979): Every 5-connected nonplanar graph contains a TK_5.

Xingxing Yu

K$_5$-Subdivisions in 5-connected nonplanar graphs
Background

- Dirac (1964): Any simple graph with $n \geq 5$ vertices and at least $3n - 5$ edges contains a TK_5. Erdős and Hajnal (1964) also mentioned this conjecture.

- Conjecture (Hajós): Graphs containing no TK_5 are 4-colorable. (Known to Dirac in 1950s)
Background

(Thomassen 1972): Any simple graph with $n \geq 3$ vertices and at least $4n - 10$ edges contains a TK_5.

(Thomassen 1972): Let G be a simple graph with n vertices and at least $7n/2 - 7$ edges, and let $v \in V(G)$. Then G contains a TK_5 in which v is not a branch vertex.

Theorem (Mader 1998): Any simple graph with $n \geq 3$ vertices and at least $3n - 5$ edges contains a TK_5. (Conjectured by Dirac in 1964.)
Our result

- If G is 5-connected and some edge of G is contained in three triangles, then G contains a TK_5.

- What about 5-connected nonplanar graphs in which some edge is contained in two triangles? (i.e., Graphs containing K_4^-.)

- Theorem (M and X. Yu, 2008): If G a 5-connected nonplanar graph and $K_4^- \subseteq G$, then G contains a TK_5.
Future work

- (Kawarabayashi 2001, 2002): 5-Connected graphs without K_4^- contain contractible edges or contractible triangles.

- (Kawarabayashi 2008): Excluding K_4^- and $K_{2,3}$ implies the existence of a nice nonseparating induced cycle.
Let \(x_1, x_2, y_1, y_2 \) be vertices of a \(K_4^- \) in a 5-connected nonplanar graph \(G \) such that \(y_1y_2 \notin E(G) \). Then there is an induced path \(P \) in \(G - x_1x_2 \) between \(x_1 \) and \(x_2 \) such that

- \(\{y_1, y_2\} \not\subseteq V(P) \), and
- \(G - V(P) \) is 2-connected.

So we have two cases.

- \(\{y_1, y_2\} \cap V(P) = \emptyset \) and
- \(y_2 \in V(P), y_1 \notin V(P) \).
Lovász conjecture

Conjecture (Lovász 1975). There is a minimum integer \(c(k) > 0 \) such that for any integer \(k \geq 1 \) and any two vertices \(u \) and \(v \) in a \(c(k) \)-connected graph \(G \), there is a path \(P \) from \(u \) to \(v \) in \(G \) such that \(G - V(P) \) is \(k \)-connected.
\{y_1, y_2\} \cap V(P) = \emptyset

Let \(G \) be a 5-connected nonplanar graph and let \(\{x_1, x_2, y_1, y_2\} \) induce a \(K_4^- \) in \(G \) such that \(y_1y_2 \notin E(G) \). Suppose \(G \) contains an induced path \(X \) from \(x_1 \) to \(x_2 \) such that \(\{y_1, y_2\} \cap V(P) = \emptyset \). Then \(G \) contains a \(TK_5 \) in which \(x_1, x_2, y_1, y_2 \) are branch vertices.
\(\{y_1, y_2\} \cap V(P) = \emptyset \)

(Watkins and Mesner 1967): Let \(R \) be a 2-connected graph and let \(y_1, y_2, v \) be three distinct vertices of \(R \). Then there is no cycle through \(y_1, y_2 \) and \(v \) in \(R \) if, and only if, one of the following holds.
Let G be a connected graph drawn in a closed disc in the plane without edge crossings, and let a_1, a_2, a_3, a_4, a_5 be distinct vertices of G on the boundary of the disc, and let $A = \{a_1, a_2, a_3, a_4, a_5\}$. Suppose G is $(5, A)$-connected and $|V(G)| \geq 7$. Let $w \in V(G) - A$ such that the vertices of G cofacial with w induce a cycle C_w in $G - A$.

Then there exist four paths P_1, \ldots, P_4 from w to A such that

(i) for $1 \leq i < j \leq 4$, $V(P_i \cap P_j) = \{w\}$, and

(ii) for $1 \leq i \leq 4$, $|V(P_i \cap C_w)| = 1$.

Xingxing Yu

K$_5$-Subdivisions in 5-connected nonplanar graphs
Paths in planar graphs
Lemma: Let G be a graph drawn in a closed disc in the plane without edge crossings, and let a_1, a_2, a_3, a_4, a_5 be distinct vertices of G on the boundary of the disc in clockwise order, and let $A = \{a_1, a_2, a_3, a_4, a_5\}$. Suppose G is $(5, A)$-connected and $|V(G)| \geq 7$. Then there exists $w \in V(G) - A$, a cycle C_w in $(G - A) - w$, and four paths $P_1, ..., P_4$ from w to A such that

(i) $V(P_i \cap P_j) = \{w\}$ for $1 \leq i < j \leq 4$, and $|V(P_i \cap C_w)| = 1$ for $1 \leq i \leq 4$, and

(ii) there exist $1 \leq i \neq j \leq 4$ such that a_1 is an end of P_i and a_5 is an end of P_j.

Xingxing Yu

K_5-Subdivisions in 5-connected nonplanar graphs
Paths in planar graphs

Xingxing Yu

K_5-Subdivisions in 5-connected nonplanar graphs
Paths in planar graphs

Let G be a 5-connected nonplanar graph and let (G_1, G_2) be a 5-separation in G. Suppose $|G_2| \geq 7$ and G_2 has a planar representation in which the vertices of $V(G_1 \cap G_2)$ are incident with a common face. Then G contains a TK_5.
Theorem (Seymour 1981, Thomassen 1981) Let G be a graph and s_1, s_2, t_1, t_2 be distinct vertices of G. Then exactly one of the following holds:

- G contains disjoint paths from s_1 to t_1 and from s_2 to t_2.
- (G, s_1, s_2, t_1, t_2) is 3-planar.
Let G be a 5-connected nonplanar graph and let \(\{x_1, x_2, y_1, y_2\} \) induce a K_4^- in G such that $y_1y_2 \notin E(G)$. Suppose G contains an induced path X from x_1 to x_2 such that $y_2 \in P$ and $y_1 \notin P$.

Let $(G, X, x_1, x_2, y_1, y_2)$ be a 6-tuple. Then G contains a TK_5, or there exists $z_1 \in V(x_1Xy_2) - \{x_1, y_2\}$ and $z_2 \in V(x_2Xy_2) - \{x_2, y_2\}$ such that $G - (V(X - \{z_1, z_2, y_2\}) \cup E(X))$ has disjoint paths Z, Y from z_1, y_1 to z_2, y_2 respectively.
Let \((G, X, x_1, x_2, y_1, y_2, z_1, z_2)\) be an 8-tuple. Then \(G\) contains a \(TK_5\), or

1. for any \(i \in \{1, 2\}\), \(H\) contains no path through \(z_i, z_{3-i}, y_1, y_2\) in order, and \(y_1z_i \notin E(G)\), and

2. there exist \(i \in \{1, 2\}\) and independent paths \(A, B, C\) in \(H\) with \(A\) and \(C\) from \(z_i\) to \(y_1\), and \(B\) from \(y_2\) to \(z_{3-i}\).
Let \((G, X, x_1, x_2, y_1, y_2, z_1, z_2)\) be an 8-tuple. Then \(G\) contains a \(TK_5\), or the following holds:

1. there exists disjoint paths \(P, Q\) in \(H\) from \(p, q \in V(B - y_2)\) to \(c \in V(C) - \{y_1, z_1\}\), \(a \in V(A) - \{y_1, z_1\}\), respectively, and internally disjoint from \(A \cup B \cup C\), and

2. \(z_2 x_2 \in E(G)\).
Substructure

K_5-Subdivisions in 5-connected nonplanar graphs
Choice of substructure

- choose \(z_1Xz_2\) maximal.
- choose \(A, B, C\) such that the following are satisfied in the listed order:
 - \(A, B, C\) are induced paths in \(H\),
 - if possible the \((A \cup C)\)-bridge of \(H\) containing \(B\) has attachments on both \(A - \{z_1, y_1\}\) and \(C - \{y_1, z_1\}\),
 - the \((A \cup C)\)-bridge of \(H\) containing \(B\) is maximal, and
 - the union of \(B\) and the \(B\)-bridges of \(H\) not containing \(A \cup C\), denoted by \(B'\), is maximal.
- choose \(P, Q\) such that
 - \(pBz_2\) is maximal and \(qBz_2\) is minimal; and subject to this, \(cCy_1\) is maximal and \(aAy_1\) is minimal.
 - There is no path in \(H\) from \(aAy_1 - a\) to \(z_1Cc - c\) internally disjoint from \(A \cup B \cup C \cup P \cup Q\).
Forcing a 5-separation

- There is a path R in H from z_1 to $r \in V(B - y_2)$ internally disjoint from $A \cup B \cup C$.
- There is no path in H from y_1 to B internally disjoint from $A \cup B \cup C$.
- There is a 2-cut $\{t_1, t_2\}$ in H separating $\{y_1, z_1\}$ from $\{y_2, z_2\}$, and $\{y_1, y_2, z_1, z_2\} \cap \{t_1, t_2\} = \emptyset$.
Forcing a 5-separation

\{x_2, y_2, z, t_1, t_2\} is a 5-cut in \(G\), \(G[V(H' \cup zXx_2)]\) is 2-connected and \((5, \{x_2, y_2, z, t_1, t_2\})\)-connected, \(G[V(H' \cup zXx_2)]\) has a plane representation in which \(x_2, y_2, z, t_1, t_2\) occur on a facial cycle in this cyclic order.