Nordhaus-Gaddum-type theorem for diameter of graphs when decomposing into many parts

Presented by Baoyindureng Wu

Joint work with Zhihua An, Daobin Li, Yun Wang, Guifu Su

College of Mathematics and System Science, Urumqi

Xinjiang University
Motivation

\[2\sqrt{n} \leq \chi(G) + \chi(G') \leq n + 1. \]
Let K_n be the complete graph of order n, and $k \geq 2$ a fixed integer. (G_1, G_2, \ldots, G_k) is said to be a k-decomposition of K_n, if G_i is a spanning subgraph of K_n for each $i = 1, \ldots, k$, $\bigcup_{i=1}^{k} E(G_i) = E(K_n)$ and $E(G_i) \cap E(G_j) = \emptyset$ for any distinct i, j.

So, (G, \overline{G}) is a 2-decomposition of G.

For a graph parameter \(p \), consider the problem:

\[
? \leq \sum_{i=1}^{k} p(G_i) \leq ?
\]

\(p = \omega, \chi, \chi_l, col(G) \)

\[
? \leq \sum_{i=1}^{k} diam(G_i) \leq ?
\]
1 Main result

Theorem 1.1 Let K_n be the complete graph of order n, and $k \geq 2$ a fixed integer. Assume (G_1, G_2, \ldots, G_k) is a k-decomposition of K_n such that G_i is connected for each $i = 1, \cdots, k$. Then for any sufficiently large n with contrast to k,

$$2k \leq \sum_{i=1}^{k} \text{diam}(G_i) \leq (k - 1)(n - 1) + 2,$$

and the bounds are best possible.
Theorem 1.2 Let K_n be the complete graph of order n and $k \geq 2$ any fixed integer. Then for any sufficiently large n with contrast to k, there is a k-decomposition (G_1, G_2, \ldots, G_k) of K_n such that $\text{diam}(G_i) = 2$ for each $i = 1, \ldots, k$.
Proof of Theorem 1.2.

We prove it by the probabilistic argument. Color each edge of K_n by colors $1, 2, \ldots, k$, randomly and independently, with the equal probability $p = \frac{1}{k}$. For each $i, 1 \leq i \leq m$, let G_i denotes the spanning subgraph of K_n with the edge set E_i, the set of edges with the color i. Hence (G_1, G_2, \cdots, G_k) is a decomposition of K_n. Let A_i be the event that $\text{diam}(G_i) \leq 2$. Then $\cap_{i=1}^{k} A_i$ is the event that $\text{diam}(G_i) = 2$ for every $i = 1, 2, \ldots, k$. For two distinct vertices $u, v \in V(G)$, let $B_i(u, v)$ be the event that $d_{G_i}(u, v) > 2$. So,

$$A_i = \cap_{u,v \in V(G)} B_i(u, v).$$

Since $Pr(B_i(u, v)) = (1 - p)(1 - p^2)^{n-2}$, we have
\[Pr(A_i) = Pr(\bigcap_{u,v \in V(G)} \overline{B_i(u, v)}) \]
\[= 1 - Pr(\bigcup_{u,v \in V(G)} B_i(u, v)) \]
\[\geq 1 - \sum_{u,v \in V(G)} Pr(B_i(u, v)) \]
\[= 1 - \left(\binom{n}{2} \right) (1 - p)(1 - p^2)^{n-2} \]
Since $p = \frac{1}{k} < 1$, $(\frac{n}{2})(1-p)(1-p^2)^{n-2} \to 0$, and $Pr(A_i) \to 1$ when $n \to \infty$. Thus $Pr(A_i \cup A_j) \to 1$, $Pr(A_i \cup A_j \cup A_l) \to 1, \ldots$, $Pr(A_1 \cup A_2 \cup \cdots \cup A_k) \to 1$ when $n \to \infty$. By the principle of inclusion-exclusion,

$$Pr(\cap_{i=1}^{k} A_i) = \sum_{i=1}^{k} Pr(A_i) - \sum_{i<j} Pr(A_i \cup A_j) + \cdots + (-1)^{k-1} Pr(\cup_{i=1}^{k} A_i)$$

$$\to n - \binom{n}{2} + \cdots + (-1)^{k-1}\binom{n}{k} = 1 > 0.$$

It follows that there is a k-decomposition (G_1, G_2, \ldots, G_k) of K_n such that $diam(G_i) = 2$ for each $i = 1, \cdots, k$.
It is interesting to consider the problem that for any fixed integer $k \geq 2$, determine the least n_k such that there exists a k-decomposition (G_1, G_2, \ldots, G_k) of K_{n_k} such that $\text{diam}(G_i) = 2$ for each $i = 1, \cdots, k$. Note that $n_2 = 5$, because if $G_1 \cong C_5$, then $G_2 \cong C_5$, and $\text{diam}(G_1) = \text{diam}(G_2) = 2$; but there is the unique decomposition (G_1, G_2) of K_4 such that G_i is connected, where $G_i \cong P_4$ for each $i = 1, 2$.
2 Preparation

Lemma 2.1 Let G be a simple graph with order n. If $\delta(G) \geq n/2$, then $diam(G) \leq 2$.

Lemma 2.2 Let T be a tree of order n with k pendent vertices. Then $diam(T) \leq n + 1 - k$.

Lemma 2.3 If G is a simple graph with order n, then $diam(G) \leq n + 1 - \Delta(G)$.

Lemma 2.4 (Erdős et al. 1989) For any connected graph G with order n,

$$diam(G) \leq \frac{3n}{\delta(G) + 1} - 1.$$
3 Outline of the proof

Fact 1. $\sum_{i=1}^{k} \Delta(G_i) \geq n - 1$.

Fact 2.

$$\Delta(G_i) \leq n - 1 - \sum_{j \neq i} \delta(G_j), \quad \delta(G_i) \geq n - 1 - \sum_{j \neq i} \Delta(G_j).$$

We consider two cases.

Case 1 $\sum_{i=1}^{k} \Delta(G_i) \geq n + 2k - 3$.

By Lemma 2.3, $diam(G_i) \leq n + 1 - \Delta(G_i)$ for each $i = 1, \ldots, k$, and thus

$$\sum_{i=1}^{k} diam(G_i) \leq \sum_{i=1}^{k} (n+1-\Delta(G_i)) \leq k(n+1)-(n+2k-3) = (k-1)(n-1)+2,$$

the result holds.
Case 2 \[n - 1 \leq \sum_{i=1}^{k} \Delta(G_i) \leq n + 2k - 4. \]

Assume that \(\Delta(G_1) \geq \Delta(G_2) \geq \ldots \geq \Delta(G_k) \).

Claim \(\delta(G_1) \geq \frac{n-2k^2+5k-4}{k} \).

Since
\[
\sum_{i \neq 1} \Delta(G_i) \leq \sum_{i \neq 2} \Delta(G_i) \leq \ldots \leq \sum_{i \neq k} \Delta(G_i),
\]

\[
k \sum_{i \neq 1} \Delta(G_i) \leq (k - 1) \sum_{i = 1}^{k} \Delta(G_i) \leq (k - 1)(n + 2k - 4),
\]

thus
\[
\sum_{i \neq 1} \Delta(G_i) \leq \frac{(k - 1)(n + 2k - 4)}{k}.
\]

By Fact 2, we have
\[
\delta(G_1) \geq n - 1 - \sum_{i \neq 1} \Delta(G_i) \geq n - 1 - \frac{(k - 1)(n + 2k - 4)}{k} = \frac{n - 2k^2 + 5k - 4}{k}.
\]
Subcase 2.1. \(\max\{\delta(G_i) : 2 \leq i \leq k\} \geq 4\).

Without loss of generality, let \(\delta(G_2) \geq 4\). By Lemma 2.4, \(\text{diam}(G_2) \leq \frac{3n}{4+1} = \frac{3n}{5}\). Since \(\delta(G_1) \geq \frac{n-2k^2+5k-4}{k}\), and by Lemma 2.4, we have

\[
\text{diam}(G_1) \leq \frac{3n}{n-2k^2+5k-4} + 1 = \frac{3nk}{n - 2(k^2 - 3k + 2)}.
\]

It is easy to see that if \(n \geq \max\{2(k^2 - 3k + 2), 10k - \frac{5}{2}\}\), then \(\text{diam}(G_1) \leq 4k\) and \(4k + \frac{3n}{5} \leq n + 1\). Therefore,

\[
\sum_{i=1}^{k} \text{diam}(G_i) \leq 4k + \frac{3n}{5} + (k - 2)(n - 1) \leq (k - 1)(n - 1) + 2.
\]
Subcase 2.2. $\max\{\delta(G_i) : 2 \leq i \leq k\} \leq 3$.

Then $\delta(G_i) \leq 3$ for each $i = 2, \ldots, k$, and thus by Fact 2, we have

$$\sum_{j \neq i} \Delta(G_j) \geq n - 1 - \delta(G_i) \geq n - 4.$$

Combining the above with the assumption that $\sum_{i=1}^{k} \Delta(G_i) \leq n + 2k - 4$, it follows that $\Delta(G_i) \leq 2k$. Again by Fact 2,

$$\delta(G_1) \geq n - 1 - \sum_{j \neq 1} \Delta(G_i) \geq n - 1 - 2k(k - 1) \geq \frac{n}{2}$$

for sufficiently large n with respect to k. Thus by Lemma 2.1, $diam(G_1) \leq 2$, and hence $\sum_{i=1}^{k} diam(G_i) \leq 2 + (k - 1)(n - 1)$, as we desired.
Thank you!