当前位置:首页>学术报告
王健 教授:Homogenization of jump processes: limits and convergence rates
浏览次数:

 
Title:
Homogenization of jump processes: limits and convergence rates
Speaker:
王健 教授,福建师范大学
Inviter: 朱湘禅 研究员
Time & Venue:

2021.10.14 16:00 N613

Abstract:

In this talk, we study homogenization problems for non-local $\alpha$-stable-like operators and their quantitative results. In particular, consider random conductance models with long range jumps on $\Z^d$, where the transition probability from
$x$ to $y$ is given by $w_{x,y}|x-y|^{-d-\alpha}$ with $\alpha\in (0,2)$. Assume that $\{w_{x,y}\}_{(x,y)\in E}$ are independent, identically distributed and uniformly bounded with $\Ee w_{x,y}=1$, where $E$ is the set of all
unordered pairs on $\Z^d$. We obtain a quantitative version of stochastic homogenization for these random walks, with the speed $t^{-(\alpha\wedge (2-\alpha))/2}$ up to logarithmic corrections.

Affiliation:  

学术报告中国科学院数学与系统科学研究院应用数学研究所
地址 北京市海淀区中关村东路55号 思源楼6-7层 南楼5-6、8层 100190
?2000-2013 京ICP备05058656号