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ABSTRACT

Recent technology has made it possible to
simultaneously perform multi-platform genomic
profiling (e.g., DNA methylation, and gene
expression) of biological samples, resulting in
so-called “multi-dimensional genomic data”. Such
data provide unique opportunities to study the
coordination between regulatory mechanisms on
multiple levels. However, integrative analysis of
multi-dimensional genomics data for the discovery
of combinatorial patterns is currently lacking.
Here, we adopt a joint matrix factorization
technique to address this challenge. This
method projects multiple types of genomic data
onto a common coordinate system, in which
heterogeneous variables weighted highly in the
same projected direction form a multi-dimensional
module. Genomic variables in such modules
are characterized by significant correlations and
likely functional associations. We applied this
method to the DNA methylation, gene expression,
and microRNA expression data of 385 ovarian
cancer samples from the TCGA project. These
multi-dimensional modules revealed perturbed
pathways that would have been overlooked with
only a single type of data, uncovered associations
between different layers of cellular activities, and
allowed the identification of clinically distinct patient
subgroups. Our study provides an useful protocol
for uncovering hidden patterns and their biological
implications in multi-dimensional “omic” data.
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INTRODUCTION

Cells are complex systems with multiple levels of organization
that interact and influence each other. The precise coordination
among epigenetic status, transcriptions, translations,
transportation, and metabolic reactions are essential in
maintaining the function and robustness of cellular systems.
However, study of the coordination among such multilevel
cellular activities has been hindered by a lack of appropriate
data resources; most genomic research has focused on global
profiling at only 1 level (e.g., profiling of gene expression or
protein abundance).

The recent development of high-throughput genomics
technologies, especially sequencing technology, has
significantly facilitated the characterization of biological
systems at multiple levels. For example, The Cancer Genome
Atlas (TCGA) project is generating multi-dimensional maps
of the key genomic changes (e.g. SNP, DNA methylation,
gene expression, and microRNA [miRNA] expression) for
the same set of tumor samples (1). The NCI60 project has
profiled 60 human cancer cell lines in terms of drug responses
(2, 3, 4), gene expression (5), protein expression (6), and
miRNA expression. With the expected drop in sequencing
cost, multi-dimensional genomics characterizations on the
same set of samples will soon become a standard practice.

Emerging multi-dimensional genomics data pose new
challenges for data analysis. In particular, because different
types of genomics data have different scales and units, we
cannot simply aggregate multiple datasets for analysis. For
a specific type of 2-dimensional genomics dataset consisting
of SNP and expression data, various eQTL approaches have
been developed to identify regulatory SNPs (7). However,
eQTL approaches cannot be applied to datasets with>2
dimensions, nor can they be used for datasets with a moderate
sample size, which include most future multi-dimensional
datasets generated by individual laboratories (rather than
consortiums). Multivariate regression is another analytical
method applicable to 2-dimensional genomics datasets to
infer correlative relationships (e.g., between gene expression
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Figure 1. (A) An example ofmulti-dimensionalmodules (md-modules). In the 3 data matrices, rows correspond to the samples, andcolumns correspond to
different measurements. Anmd-moduleconsists ofr rows andnI (I =1,2,3) columns for gene expression (GE), miRNA expression (ME), and DNA methylation
(DM) data, respectively. These subsets of DMs, MEs, and GEs exhibit correlated profiles across a subset of samples. (B) Rationale for the joint NMF approach.
Input matrices of methylation, miRNA, and gene expression data are projected onto a new common space, where the 3 correlated patterns containing different
types of genomic measurements are uncovered. (C) Illustration of joint NMF factorization and the 3 identifiedmd-modules.

and transcription factor binding data (8) or between gene
expression and proteomic data (9)). More recently, Kutalik
et al. (10) proposed a powerful modular analysis approach,
called the Ping-Pong algorithm, to uncover theco-modules
across gene expression and drug response data. Undoubtedly
these studies have identified important relationships between
pair-wise genomics variables. We believe that the time has
come to simultaneously explore the coordination patterns
across more than 2 types of genomics variables.

In this paper, we apply a powerful matrix factorization
framework to identify correlative modules in multi-
dimensional genomics data (Figure 1). As the testing
system, we used data from the TCGA project, including DNA
methylation, miRNA, and gene expression profiles of 385
ovarian cancer samples. These 3 types of genomics variables
are known to be highly dependent on each other. Our goal
was to identify subsets of mRNAs, miRNAs, and methylation
markers for which all or a subset of the samples exhibit
correlated profiles across different types of measurements
(Figure 1A). These subsets are termed as “multi-dimensional
modules(md-modules)”.

By identifyingmd-modules, we can break down the massive
sets of data into smaller building blocks that exhibit similar
patterns across certain rows and columns (Figure 1). This
procedure provides 2 major advantages. First, representing
coherent features across multiple data sets reduces the
complexity of the data and facilitates a global overview
of the inherent structure of the data. More importantly,
this modular approach captures the associations among
sets of different types of variables (mRNA, miRNA, and
methylation). The multi-dimensional modules can identify
vertical associations between multiple regulatory levels, and
can reveal significantly disrupted pathways that would be

ignored if only data of the single dimensions were used. In
addition, the multi-dimensional modules can stratify patients
(samples) into clinically distinct groups, which facilitate the
identification of the complex molecular mechanisms that
underlie different clinical phenotypes.

MATERIALS AND METHODS

Data preparation and preprocessing

The TCGA data was downloaded from the TCGA Data Portal
on April 27, 2009. We used 3 types of data, as follows:
gene expression data (Agilent G4502A), DNA methylation
data (Illumina 27K), and miRNA expression data (Agilent
H-miRNA 8x15K v2). In total, 385 samples are shared by
the 3 datasets. We normalized the columns of the expression
matrices, and then we scaled all the matrices so that sum of
squares of each matrix is the same.

To make the input data fit the constraints of nonnegativity,
we employed the method suggested by (11). We doubled the
columns of each matrix, so that each variable (gene, miRNA)
was represented with 2 columns in the respective matrix. If the
original value of the variable was positive, then it was stored
in the first column; otherwise, its absolute value was storedin
the second column. The rest of matrices were filled with zeros.

Brief overview

Nonnegative matrix factorization (NMF) is increasingly being
used to analyze high-dimensional genomics data (11, 12).
NMF factorizes a matrixXM×N into 2 nonnegative matrices
X =WH , whereW is anM by K matrix containing the basis
vectors, andH is aK by N matrix containing the coefficient
vectors. Each element inW and H must be≥0. Thus, a
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key feature of NMF is the ability to identify nonsubtractive
patterns that together explain the data as a linear combination
of its basis vectors. TheK basis vectors inW can be regarded
as the “building blocks” of the data, and theK coefficient
vectors describe how strongly each “building block” is present
in the data.

Recently, an NMF-type method has been proposed to
analyze pair-wise genomics data (13, 14), including gene
expression and transcription factor-binding data (13). We
have developed a semi-supervised framework for combing
miRNA/genes expression profiles and networked data to
extract miRNA-gene regulatory programs (15). Here, we
adopt the powerful NMF-type method for the discovery of
multi-dimensional modules by integrative analysis of cancer
genomic data, all profiled on the same samples. We introduce
the idea using a 3-dimensional dataset, but it is applicableto
higher-dimensional datasets.

The NMF problem

Given a data set consisting ofN measurements ofM
nonnegative scalar variables, we let theM -dimensional
measurement vectorsx.j (j=1,··· ,N ) form the data matrix
XM×N . For each columnx.j , a linear, nonnegative
approximation of the data is given by

x.j =

K∑

k=1

w.khkj =Wh.j , or X =WH

whereW is an M×K matrix containing the basis vectors
w.k as its columns, andH is an K×N matrix containing
the coefficient vectorh.j corresponding to the measurement
vectorx.j . Note that each measurement vector is written in
terms of the same basis vectors. TheK basis vectorsw.k can
be thought of as the “building blocks” of the data, and the
K-dimensional coefficient vectorh.j describes how strongly
each building block is present in the measurement vectorx.j .

Given a nonnegative data matrixX , the optimal choices
of matricesW and H are defined to be those nonnegative
matrices that minimize the reconstruction error between
X and WH . Although several error functions have been
proposed (16, 17, 18), the most widely used is the squared
Euclidean error function:

F (W,H)=‖X−WH‖2

F .

The resulting WH is called the nonnegative matrix
factorization of X . The choice ofK is often problem-
dependent. In most cases,K is chosen such thatK <
min(M,N) and WH represents a compressed form of the
data inX . By not allowing negative entries inW and H ,
NMF enables a non-subtractive combination of parts to form
a whole (17).

The joint NMF framework for integrative analysis

Let X1, X2, X3 beM×N1, M×N2, andM×N3 matrices
representing 3 types of genomic profiling of the same samples,
e.g. the methylation profiles ofN1 DNA markers and the
expressions ofN2 genes andN3 miRNAs of M samples. To
extractmd-modulesacross the 3 data matrices, the following

joint factorization framework was used to decompose the 3
data matrices into a common basis matrixW and different
coefficient matricesHI (I =1,2,3):

XI ≈WHI .

with the nonnegativity constraints:

W ≥0, HI ≥0, I =1,2,3.

where W is an M×K matrix, and each column ofW
represents a basis vector of the reduced system.HI is a
matrix of size K×NI , and each row ofHI represents a
coefficient vector. Then, the objective function of joint NMF
is formulated as:

min
3∑

I=1

‖XI−WHI‖
2

F .

Several algorithms have been developed to optimize
the NMF problem (19). Lee and Seung (18) devised a
multiplicative algorithm that is simple to implement and
performs well. Like the standard NMF, we employed the
“multiplicative update” equations to minimize the Euclidean
error function. Specifically, given a desired rankK, the
algorithm iteratively computes the approximations ofX1,
X2, and X3 in the same manner. The method starts by
randomly initializing matricesW andH1, H2, andH3, which
are iteratively updated to minimize the Euclidean distance
function. Specifically,W , H1, H2, andH3 are updated at each
step by using the generalized multiplicative update rules as
follows:

Wia =Wia
(X1H

T
1

+X2H
T
2

+X3H
T
3

)ia

(W (H1H
T
1

+H2H
T
2

+H3H
T
3

))ia
,

(HI)aµ =(HI)aµ
(WT XI)aµ

(WT WHI)aµ
, I =1,2,3.

The above algorithm is a local optimization procedure,
and thus, found only a local minimum. To address this
limitation, we repeated the procedure for 50 times with
different initial solution matrices. The factorization which
leads to the lowest objective function value was used as
the final solution for further analysis. The solutions found
were reproducible, since that of different runs of the repeated
algorithm showed strong correlations. The time complexityof
the joint NMF decomposition isO(tK(M +N1+N2+N3)

2)
which is similar to that of the original NMF model, wheret
is the number of iterations. The key to use this procedure is
the computer memory. Generally, if we have enough memory
space, it shall be applicable to even millions of features. If we
do not have enough memory space, we can consider reducing
the dimension of input data by data-reduction techniques such
as the PCA-select tool used for decreasing the feature number
in population structure studies (20).

In this way, the 3 data matrices are projected into a common
coordinate system to explore the correlative relationships
among the 3 types of variables (Figure 1B and C). Using
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this procedure, we obtained coefficient matricesH1, H2,
and H3 that can be used to identify memberships of DM
markers, miRNAs, and genes in multi-dimensional modules
respectively. In the general application of NMF (11, 12),
researchers have used the maximum of each column ofH
(or row of W ) to determine membership. In this way, each
gene (or other object) can belong to one and only one module.
However, some markers/miRNAs/genes may not be active
in any module or may be active in multiple modules with
multiple functions. Considering these facts, based onH1, H2,
andH3, we calculated thez-score for each element in each
row of H by:

zij =
xij−µi

σi
,

where µi is the average value for featurej (DM
markers/miRNA/gene) inHI (I =1,2,3), and σi is the
standard deviation. We assigned featurej as a member of
modulek, if zij was greater than a given thresholdT . Each
DM marker/miRNA/gene may be assigned tomd-modules,
which allows the identification of multiple functional activities
of DM markers/miRNAs/genes. We have implemented the
method as a Matlab software package, which is available
from the Supplementary file. Mathematically, the multi-
dimensional data of same samples are modeled using multiple
matrices that share the same rows. Therefore, the technique
cannot be applied to different types of data from different
samples.

Statistical significance of vertical correlations in
md-modules

We expect that, within anmd-module, the profiles of genes,
DM markers, and miRNAs are highly (anti-)correlated.
To determine whether such relationships are statistically
significant, we performed the following assessment. We
calculated the “between-correlation” between 2 matrices with
the same row dimensions as the sum of the absolute values
of Pearson’s correlations between any 2 columns (1 column
from each matrix). We derived the statistical significance (p-
value) of the correlation between 2 matrices by comparing
it to the distribution of between-correlations between 1000
random matrix pairs. Each pair is composed of 2 matrices
with dimensions identical to the original ones, whose elements
are extracted from randomly permuted matrices based on
the original ones.p-values of<0.05/200 were considered
significant. For anmd-module, if all 3 p-values for the pair-
wise submatrices are significant, then the vertical correlation
of this module is considered to be statistically significant.

Functional analysis of identifiedmd-modules

For eachmd-module, we identified 3 gene sets, as follows: (1)
genes from the GE dimension; (2) genes in the 20-kb region
around the methylation markers in the DM dimension; (3)
genes targeted by miRNAs in the ME dimension (based on
the miRNA targets from the Microcosm database). For each
gene set, we performed 2 types of enrichment analyses: GO
biological process and KEGG pathway analyses.

Cancer gene and protein interactions enrichment analysis

The protein-protein interaction network data was downloaded
from BioGRID (release 2.0.54). The final network has 7682
proteins and 33165 interactions. The cancer gene list was
obtained from the CGC Website (21). All cancer genes that are
not included in our input gene list were excluded. The final list
contains 290 cancer genes. We also collected an epigenetically
regulated gene list of ovarian cancer, which includes 40 genes
(22). All of the enrichment analyses for a gene set are assessed
by the right-tailed Fisher’s exact test.

“Vertical” implications of identified regulatory
md-modules

For eachmd-module, we investigated the vertical associations
between different dimensions by the following “overlapping
analysis”: we first identified overlapping genes between those
from the GE dimension and those adjacent to methylation
markers in the DM dimension, or between those from the
GE dimension and those targeted by miRNAs in the ME
dimension, and then performed the enrichment significance
assessment.

Clinical characterization

Based on the signals for all samples in each column of the
common basis matrixW , we can characterize their level of
association with the discoveredmd-modules. For eachmd-
module, we divided the set of samples into 2 groups: module-
specific and not module-specific, by employing thez-score for
each column ofW with a threshold of 1. The clinical data were
downloaded from the TCGA portal. Kaplan-Meier curves
were computed by using R. Survival distributions between
groups were computed via the log-rank test. Age differences
between groups were compared by the Wilcoxon signed-rank
test.

RESULTS

Figure 2 illustrates an example using simulated data (see
the Supplementary file). In a matrix representation, a multi-
dimensional module consists ofr rows andnI (I =1,2,3)
columns for mRNA, miRNA, and methylation markers,
respectively. Within theser rows (samples) in each matrix,
the nI (I =1,2,3) columns exhibit correlated measurements
(Figure 2). In biological applications, permutation testsare
performed to evaluate the statistical significance of eachmd-
moduleaccording to the “between” correlations of different
types of variables. Details and parameter selections are
described in the Methods section and in the Supplementary
file.

Before describing the application of this method, we
briefly show how the md-module discovery is related to, but
different from, several typical data mining tasks. Most existing
techniques for module identification were applicable only to
one or two matrices at a time. For example, the goal of
clustering methods is to identify a group of relevant rows or
columns in a data matrix. A more related task “biclustering
(co-clustering)” refers to a class of clustering techniques that
perform simultaneous clustering of rows and columns in a
data matrix (23). More recently, Kutaliket al. (10) extended
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Figure 2. Illustration of the patterns (md-modules) identified by the adopted
method. A simulated dataset with the same number of samples (rows) and
different number of features (columns) was generated. The joint NMF method
can accurately discover the patterns embedded in these data. A pattern may
involve as many as all 3 datasets simultaneously or only cover two datasets.
These different patterns may share the same samples (overlap) or/and the same
features.

the traditional modular analysis approach from one to two
data matrices that share one common dimension, and applied
their method to identifying drug-gene co-modules. We should
note that this method is not directly applicable to three
matrices. Shenet al. (24) have proposed a joint clustering
model for multiple genomic datasets, but it was designed
for sample clustering and subtype discovery and cannot
identify modules comprising of correlated variables. We have
previously proposed a NMF-type method to analyze paired
matrices subjected to network constraints (15). However, it has
not been applied to more than two data matrices and tested for
multi-dimensional modules analysis.

Identification of Multi-dimensional Modules Involved in
Ovarian Cancer

The TCGA ovarian cancer dataset consisting of gene
expression, DNA methylation, and miRNA expression profiles
across 385 samples (patients) was used as a testing system
to show the discovery of multi-dimensional modules. After
parameter optimizations (details in Methods), the 3 large
matrices were broken down intoK =200 basic building
blocks, from which 200multi-dimensional modules (md-
modules)were derived. The dimension reduction captures the
major information embedded in the original data; the average
sample-wise correlations of the reconstructed data using these
building blocks (based onW andHI ) and the original data
were 0.90, 0.92, and 0.91 in the methylation, miRNA, and
gene expression dimensions, respectively. The small variances
of those correlations further demonstrate the robustness of the
method (Figure 3A). The correlated profiles for the 3 samples
are plotted in Figure 3B.

Each of the 200md-modulescomprises a set of genes,
methylation markers, and miRNAs. In total, the 200md-
modulescover 2985 genes, 2008 DNA methylation markers,
and 270 miRNAs. The average module sizes in the gene,
methylation markers, and miRNA dimensions are 239.6,

Figure 3. (A) Box-plot of sample-wise correlations of original and
reconstructed methylation, miRNA, and gene expression profiles across 385
samples. (B) Original data are plotted against the reconstructed methylation,
miRNA, and gene expression profiles for 3 samples.

162.3, and 13.8, respectively. Size distribution and other
characteristics of these modules are described in the
Supplementary file.

Multi-dimensional modules reveal multilevel vertical
associations and cooperative functional effectsTo assess
the biological relevance of the identified multi-dimensional
modules, we first tested the functional homogeneity of
members within individual dimensions. A set of genes is
defined to be functionally homogenous if it is enriched in
at least 1 gene ontology (GO) biological process category
(25), with a q-value of <0.05 (the q-value is thep-value
after a False Discovery Rate multiple testing correction).
Among the 200 md-modules, 80%, 62.7%, and 12.5%
were functionally homogenous in the gene expression (GE)
dimension with respect to member genes, in the DNA
methylation (DM) dimension with respect to genes directly
adjacent to the member DNA methylation markers, and in
miRNA expression (ME) dimension with respect to member
miRNAs, respectively. The functions of the miRNAs were
predicted based on the functions of the target genes. These
values are significantly higher than those obtained after
randomization (5%, 13.1%, and 3.9% for GE, DM, and ME,
respectively) (Figure 4A).
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Figure 4. (A) Enrichment ratio ofmd-modulesin each dimension (GE, DM,
and ME), with respect to the GO biological process terms. Forcomparison,
the mean ratio of functional enrichment for 100 corresponding random runs
is also plotted. (B) and (C) Examples of protein interactionenrichment and
cancer gene enrichment, which were calculated formd-modules173. Thep-
values were determined by right-tailed Fisher’s exact test.

Although all 3 dimensions showed significant enrichment
in developmental processes that are known to be tightly
associated with cancer pathogenesis, this preference is
most obvious in the DM dimension, with additional strong
participation in embryonic development. This result is
consistent with the previous report that polycomb complex
targets in the embryonic stem cell are predisposed to cancer-
specific hypermethylation (26). The most frequently activated
biological processes in the GE dimension are responses
to external stimuli (e.g., chemotaxis, locomotor behavior,
and inflammatory responses). This observation points to
the flexibility of gene expression programs upon external
perturbations. The ME dimension shows a distinct preference
for participation in transcriptional regulation (as expected) and
cell differentiation.

Although the individual dimensions of these modules
exhibit a significant level of functional homogeneity,
combining all dimensions reveals an even stronger functional
synergy. When the GE dimension genes, methylation adjacent
genes, and miRNAs of a module were combined, 93% of the
md-moduleswere functionally homogenous, compared to only
7.9% after randomization (Figure 4). This result shows the
power of current integrative analysis of muilti-dimensional
data in identifying genomic variables of different naturesthat
are involved in the same functional pathways.

The ability of the modules to capture multilevel
synchronicity was also observed relative to perturbed
KEGG pathways. For example, simply by combining multiple

dimensions, we observed that 9 modules showed significant
perturbations in at least 1 KEGG pathway (p-value<0.05)
that were not shown otherwise. These pathways include
TGF-β signaling, Hedgehog signaling, bladder cancer, and
cytokine-cytokine receptor interaction pathways, all of which
have been confirmed to be closely associated with ovarian
cancer (27, 28, 29, 30, 31, 32). For 11.5% of themd-modules,
the pathway enrichment for combined members from all 3
dimensions are more significant than that for any individual
dimension.

According to the model principle, amd-moduleshould
capture vertical associations, i.e., associations between
variables of different dimensions (e.g. GE and DM) in
it. Indeed, compared to randomly permuted modules, the
Pearson’s correlation coefficients between variables of any
2 of the GE, DM, and ME dimensions are significantly
high (p-value<0.05/200) in 65.5% of the modules (details
see Materials and Methods). This result indicates that
the probability of identifying these modules by chance
is close to zero. The strong statistical correlations across
different dimensions imply the coordinated activities of genes,
methylations, and miRNAs.

To explore further the biological implications of these
vertical correlations, we tested whether genes in anmd-
modulewere likely to be located close to the methylation
markers in the same module or/and targeted by miRNAs
in the same module. At a significance level of 0.1, we
found that 75 of the 200md-modulesshowed significant
overlap between genes adjacent to methylation markers and
genes within the same module. This result confirms the
strong influences of DNA methylation on the expression of
adjacent genes. Likewise, 146 modules withp-value<0.1
show significant overlap between genes targeted by miRNAs
and genes within the samemd-module. Because the targeting
relationship between miRNAs and genes is far from complete,
our overlap assessment can only serve as an underestimate.
These data show that themd-modulescan elucidate the vertical
association mechanisms between different layers of gene
regulation. Table 1 showcases 12 of themd-modules, including
the overlap between different dimensions within the same
modules, and the over-represented functions and pathways of
the modules.

Interestingly, among the 3733 genes overlapping at least
two dimensions from allmd-modules, genes related to ovarian
cancer are significantly enriched (p-value=0.000087). Note
that the overlapping genes are those on which regulatory
perturbations were observed at multiple levels. It is not
surprising that those genes are especially concentrated
in the biological processes of “positive regulation of
developmental processes,” “positive regulation of cell
differentiation,” “inflammatory response,” and “regulation of
cell development.”Md-module173 contained 6, 9, and 9
genes overlapping the GE and DM, GE and ME, and DM
and ME dimensions, respectively. Among these genes,NID2
(Nidogen-2) was overlapped by all 3 dimensions.NID2
recently was defined as a new biomarker for ovarian cancer by
comparing its concentration in the serum of healthy women
with that in women with ovarian carcinoma (33). More
interestingly,NID2 gene promoters are aberrantly methylated
in human gastrointestinal cancer (34), and methylatedNID2
has been defined as a marker for primary bladder cancer (35).
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Table 1. Summary of the 12md-modules detected by the joint NMF method in TCGA Ovarian data. No.: the index of themd-module. Ge: number of genes in
GE dimension. Me(Ge): number of DM markers and their adjacent genes. Mi(Ge): number of miRNAs and their targeting genes.Oa: overlap between gene set
and DM markers adjacent gene set; Ob: overlap between gene set and miR target gene set.

No. Ge Me(Ge) Mi(Ge) Oa Ob Selected overrepresented functional sets
34 248 195(174) 11(715) 6† 12* embryonic morphogenesis; glutamate signaling pathway; growth factor activity;
48 243 209(171) 18(437) 10♯ 11† pattern specification process; embryonic morphogenesis
67 220 189(153) 12(1561) 6† 19* endopeptidase inhibitor activity; G-protein-coupledreceptor binding; cell communication
68 297 179(170) 9(320) 8‡ 9† embryonic morphogenesis; positive regulation of transport; regulation of cytokine secretion
71 215 207(171) 18(1946) 7‡ 23* homophilic cell adhesion; cell-cell adhesion; calcium-dependent cell-cell adhesion
81 195 77(62) 16(1261) 4‡ 16† cell-cell adhesion
112 239 217(201) 16(697) 6† 12* cytokine activity; inflammatory response
116 235 217(175) 16(545) 5* 10* keratinization; calcium-dependent cell-cell adhesion; homophilic cell adhesion
123 217 216(176) 16(459) 6† 8* proteinaceous extracellular matrix; embryonic morphogenesis; homophilic cell adhesion
154 238 192(162) 15(1030) 6† 17* cytokine activity; heparin binding; inflammatory response; tumor necrosis factor receptor binding
169 204 245(218) 15(1065) 8‡ 14* organ morphogenesis; regulation of leukocyte chemotaxis; reproductive structure development
193 200 178(146) 21(809) 4* 15† homophilic cell adhesion; calcium-dependent cell adhesion; embryonic morphogenesis

where *(0.05–0.1),†(0.01–0.05),‡(1.0e-03–0.01) and♯(1.0e-03–0) represent thep-value ranges for the hypergeometic test respectively.

In 44 modules, the genes from the GE and DM dimensions
are enriched in protein-protein interactions (Figure 4B) (p-
value<0.05; we skipped the ME dimension, due to the
large number of potential miRNA targets). Among these
44 modules, 18 are enriched in protein-protein interactions
bridging the GE and DM dimensions (i.e., 1 protein belongs to
the GE dimension and another belongs to the DM dimension)
(p-value <0.05 with right-tailed Fisher’s exact test). This
finding highlights the different regulatory effects on closely
adjacent molecules of the same pathway.

Finally, we hypothesized that the identifiedmd-modules
might play a role in cancer. Indeed, 22 combined sets of
genes (from the GE and DM dimensions) are enriched with
the cancer gene reference set (p-value<0.05 with right-tailed
Fisher’s exact test) (Figure 4C) (i.e., the Cancer Gene Census
[CGC] list (21)). The results of the large-scale enrichment
analysis support the biological relevance of the regulatory
programs detected by our method.

Multi-dimensional modules capture multilevel synchronized
disruptions on pathways: Two case studiesThis section
provides in-depth descriptions of 2 case studies (modules
119 and 5) to demonstrate how multilevel regulatory changes
cooperatively perturb pathways.

Md-module 119The individual dimensions of module 119
do not show significant enrichment in any KEGG pathway.
However, when all 3 dimensions were considered, the bladder
cancer pathway emerged as a significantly disrupted pathway.
This pathway, which is frequently altered in bladder cancer,
shares a set of known oncogenes and tumor suppressors
with many other cancers (e.g., prostate, ovarian, and lung
cancers, etc). Module 119 overlaps with the bladder cancer
pathway in 3 genes in the GE dimension (MMP1, MYC, and
RB1), 3 genes adjacent to markers in the DM dimension
(CDKN2A, RASSF1, and TYMP), and 4 miRNAs in the
ME dimension (mir-130b, mir-149, mir-196b, andmir-218).
Figure 5A provides a snapshot of perturbation positions
for some of these molecules along the pathway. Promoter
hypermethylations of 2 identified tumor suppressor genes,
CDKN2A and RASSF1, are thought to be involved in the
development and progression of ovarian cancer (22). The

DNA methylation markers adjacent toRASSF1andCDKN2A
were negatively correlated with the expression of these 2
genes (p-value <0.0001). Figure 5A shows thatRASSF1
could be additionally inhibited by the increased expression of
its predicted posttranscriptional regulatormir-130 in ovarian
tumors, compared to normal tissues.RASSF1encodes a
protein similar to the effector proteins of the oncogeneHRAS.
Thus, promoter hypermethylation will silenceRASSF1,
thereby upregulating the activity ofHRAS. The effector of
HRASon the pathway,ARAF, is also a potential target of
mir-218and, thus, would also be activated.

The next 2 neighbors on the pathway,MAPK1 and
RPS6KA5, are potentially targeted by another onco-miRNA
mir-130b, whose elevation is known to be associated with
a variety of cancers (36, 37, 38).Mir-130b is predicted
to target several downstream molecules in this pathway,
including CDKN1A andE2F2/3, both of which are reported
to be critically involved in the pathogenesis of ovarian cancer
(39, 40). In fact, the multiple potential targets ofmir-130b
in the bladder cancer pathway suggest thatmir-130b could
be a key regulatory factor of this dysfunctional pathway in
ovarian cancer. The GE dimension of our module includes 2
important genes on this pathway, the oncogeneMYC and the
tumor suppressorRB1. An interesting gene,CCND1, connects
MYC, RB1, and another tumor suppressor gene,CDKN1A, in
this pathway. Mutations, amplification, or overexpressionof
CCND1, which alter the cell cycle progression, are observed
frequently in a variety of tumors (41, 42). Thus,CCND1may
be an important contributor to tumorigenesis. This example
clearly shows that the multi-dimensional modules capture the
associations among epigenetic regulation, gene expression,
and posttranscriptional regulation on various parts of the
pathway. Such synchronized effects from multiple regulatory
levels are otherwise difficult to identify.

Md-module 5 As another example,md-module5 captures
the significant dysfunction of the TGF-β signaling pathway
in ovarian cancer, which, again, only become obvious by
combining perturbations in all 3 dimensions. Genes in this
module that participate in the TGF-β pathway includeINHBA,
INHBB, COMP, andMYC in the GE dimension,PPP2R2C,
INHBE, andGDF5adjacent to markers in the DM dimension,
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Figure 5. Multilevel factors cooperatively perturb pathways. (A) Bladder
cancer pathway and (B) TGF-β signaling pathway, which are enriched in the
combination of molecules in all 3 dimensions, but not in eachdimension. In
both subfigures, molecules in this module participating in the corresponding
pathways include those from the gene expression dimension (in green), DNA
methylation dimension (red), miRNA expression dimension (blue), miRNA
targets (white).

andmir-363, mir-768-5p, andmir-451 in the ME dimension
(Figure 5B shows a snapshot of perturbation positions for
some of these molecules among the pathway). The TGF-
β signaling pathway normally exerts anticancer activities by
arresting the G1-S transition. However, its abnormal function
reverts to promote tumorigenesis, especially in terms of
metastatic progression, a functional switch known as the
“TGF-β paradox” (44). In fact, in this module, 60% of tumors
with characterized recurrences sites have metastasized.

The “core” metastasis-associated gene expression signature
is manifested in this module, mainly through the increased
expressions ofCOMP and INHBA (45). This finding further
confirms the strong metastasis characteristics of samples
in the module. Interestingly,mir-363, mir-768-5p, and mir-
451 all potentially targetEP300, a metastasis suppressor
whose decreased expression and protein abundance have
been detected in many highly metastatic cancer tissues (46).
Another tumor suppressor,PPP2R2C, not only appeared in
the methylation dimension of the module, but also may be a
potential target ofmir-363. In addition,mir-363targets a set of
SMADmolecules, which play important roles in the metastasis
transition contributed by TGF-β (47, 48, 49). Furthermore,
mir-768-5pis predicted to inhibitE2F5 and BMPR1A, both
of which support the original anticancer activities of TGF-β
pathway (50, 51).

The TGF-β signaling pathway has been regarded as a
potential therapeutic target in ovarian cancer metastases

(27). More interestingly, a recent study suggests that the
accumulation of epigenetic modifications, including DNA
methylation, leads to the suppression of TGF-β signaling
and contributes to ovarian carcinogenesis (52). Our multi-
dimensional module facilitates the discovery of the abnormal
functions of this pathway at multiple regulatory levels. Thus,
this method can aid a holistic approach to drug interventions
that can simultaneously correct the effects of various types of
dysfunctions.

Clinical associations of the multi-dimensional modulesIn
the NMF framework, the decomposed component vector
(i.e., column of theW matrix) can provide information on
the association of each sample/patient with an individual
module. This information, combined with the available
clinical characterizations of each patient, can aid in the
discovery of phenotype-specificmd-modules. An md-module
that stratifies patients into clinically distinct groups can shed
light on the molecular mechanisms of the respective clinical
phenotypes.

Based on the information from theW matrix, we compared
the survival time of ovarian cancer patients that are strongly
associated with a specificmd-modulevs. those that are
not. We found patients in severalmd-moduleswho showed
significantly shorter or longer median survival time (log-
rank test p<0.05, Supplementary file). For example, 13
patients are strongly associated withmd-module166. They
show significantly worse outcome, with a median survival
of 26.4 months compared to 34.1 months for other patients
(p=0.0006, log-rank test) (Figure 6A). In fact, in all 3
dimensions of thismd-module, these 13 patients show distinct
characteristics compared to the rest of the patients. For
example, genes/miRNAs in this module are over/under-
expressed in these 13 samples compared to other samples,
as are the methylation levels of the markers. The module
contain numerous cell cycle check-point genes (e.g.,BUB1B,
CENPF, MAD2L1, CCNB1, BUB1, CCNA2, CHEK1, and
TTK), and is significantly enriched in genes from the “nuclear
division” functional category (p-value <10−8). In another
case, the patients inmd-module3 are associated with an
improved survival, with a median survival of 38.2 months
vs. 33.8 months in the remaining patients (p<0.02, log-rank
test). This module reveals the significant perturbation of the
endometrial cancer pathway with several key genes related to
tumorigenesis, e.g.EGFR, CTNNA2, andARAF.

We identified 20md-modules, each of which contains
patients with significantly different age characteristicsfrom
patients outside the module. For example, patients in module
28 had an older median age compared to other patients (66.3
years vs. 58.7 years;p=0.009, rank-sum test) (Figure 6C),
andmd-module78 was associated with significantly younger
patients (median age of 54.1 years vs. 60.2 years for the rest
of patients) (p=0.002, rank-sum test) (Figure 6D).

Finally, in addition to tumor samples, our study samples
include eight normal fallopian tube samples.Md-module
120 contains 6 samples, all of which are normal fallopian
tube samples (enrichmentp=6.4×10−12 based on Fisher’s
exact test). This is an extreme example demonstrating that
our modules can distinguish phenotypically distinct patient
groups. A number of miRNAs, e.g.mir-143, mir-145, mir-
224, andmir-424, are reported to be down-regulated in ovarian
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Figure 6. (A) and (B) Kaplan-Meier survival analysis for patients associated with module 166 (A) or module 3 (B) compared to other patients. Thep-values of
the log-rank test werep=0.0006 andp=0.019, respectively. Median survivals for patients in module 166or module 3 compared to other patients were 26.4 vs.
36.1 years and 38.2 vs. 33.8 years, respectively. (C) and (D)Box-plot for the ages of patients associated with module 28 (C) or module 78 (D) compared to other
patients. Thep-values of the rank-sum test werep=0.009 andp=0.002, respectively. Median ages for patients in module 28 or module 78 compared to other
patients were 66.3 vs. 58.7 years and 54.1 vs. 60.2 years, respectively.

carcinoma cells (53, 54, 55). Not surprisingly, all of them show
high expression values in this module containing only normal
samples.

DISCUSSION

Recent technology has enabled the simultaneous multi-
platform genomic profiling of biological samples, resulting
in so-called multi-dimensional genomic data. With the
rapid decline of sequencing costs, such data will soon
accumulate rapidly. However, systematic analysis of such
multi-dimensional data for discovering biologically relevant
combinatorial patterns are currently lacking. A great number
of tools designed for 1- or, at most, 2-dimensional data
have been developed, and many of which have been applied
for genomic data analysis in the past. In this paper, we
attempted to adopt powerful data analysis technique to address
the sophisticated modular structures embedded in multi-
dimensional genomics data. We proposed the novel concept
of multi-dimensional modules (md-modules).

Using the TCGA ovarian cancer dataset comprising gene
expression, DNA methylation, and miRNA expression in
385 samples, we showed thatmd-modulesprovide several
unique insights. (1) By considering several different aspects
of genomic modulation,md-modulescan reveal perturbed
pathways that would be overlooked with only a single type
of data. (2) Anmd-moduleidentifies associations between

different layers of cellular activity (e.g., DNA methylation,
gene, or miRNA expression), even if these associations exist
only in a subgroup of samples. (3) Anmd-modulecan identify
clinically distinct patient (sample) subgroups that share
subsets of multi-dimensional genomic features (methylations,
gene expressions, etc). Cancer in particular is characterized
by the existence of many subtypes with heterogeneous genetic
origins, and one type of genomic feature is often not
sufficient to characterize the clinical subgroup. We should
note that the md-modules were constructed based on variable
correlations/associations, which do not necessarily imply
causal relationships among the variables. However, since
many identified md-modules are of significant biological
relevance, we believe that such modules can be a good start
to uncover further underlying causal mechanisms of gene
regulation.

Identifying coordinated patterns across multiple regulatory
layers is a vital step towards revealing the high-order
organization of complex gene regulatory systems. In this
study, we attempted to reveal the coordinated subspace
patterns comprising the epigenetic, transcription, and post-
transcription levels, yet the real picture can be much more
complex, given the many other levels of regulatory controls
(e.g., copy number changes, single nucleotide polymorphisms,
protein transport, and localization). For example, gene copy
number losses ofmiR-210 have been found in ovarian
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carcinomas (56), and mutations inp53are the most common
gene mutations in human cancer, including ovarian cancers
(57). In future studies, it will be worthwhile to apply the
proposed method to more data sources simultaneously, to
uncover more sophisticated “factories” that comprise many
layers of regulatory factors.
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